Optimal mild solutions and weighted pseudo-almost periodic classical solutions of fractional integro-differential equations

被引:18
作者
Cao, Junfei [1 ]
Yang, Qigui [1 ]
Huang, Zaitang [1 ,2 ]
机构
[1] S China Univ Technol, Sch Math Sci, Guangzhou 510640, Peoples R China
[2] Wuzhou Univ, Sch Math & Phys, Wuzhou 543002, Peoples R China
基金
中国国家自然科学基金;
关键词
Optimal mild solutions; Weighted pseudo-almost periodic classical solutions; Fractional integro-differential equations; Existence and uniqueness; DIFFERENTIAL-EQUATIONS; EXISTENCE; UNIQUENESS;
D O I
10.1016/j.na.2010.08.036
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we investigate a class of fractional integro-differential equations given by d(alpha)x(t)/dt(alpha) = Ax(t) + f (t, x(t), Gx(t)). Our main results concern the existence, uniqueness of optimal mild solutions and weighted pseudo-almost periodic classical solutions. An example is given to illustrate our results. Crown Copyright (C) 2010 Published by Elsevier Ltd. All rights reserved.
引用
收藏
页码:224 / 234
页数:11
相关论文
共 42 条
[1]  
Agarwal RP, 2007, J NONLINEAR CONVEX A, V8, P397
[2]  
Ahmad B., 2008, Communications in Applied Analysis, V12, P107
[3]  
Anguraj J., 2009, Comm. in Math. Anal, V6, P31
[4]  
Anh V., 2003, J. Appl. Math. and Stoch. Anal., V16, P97, DOI DOI 10.1155/S1048953303000078
[5]  
[Anonymous], ABSTRACT DIFFERENTIA
[6]  
[Anonymous], 1975, STABILITY THEORY EXI
[7]  
Bahuguna D., 1998, Appl. Math. Stoch. Anal, V11, P507, DOI [10.1155/S1048953398000410, DOI 10.1155/S1048953398000410]
[8]   Nonlocal Cauchy problem for abstract fractional semilinear evolution equations [J].
Balachandran, K. ;
Park, J. Y. .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2009, 71 (10) :4471-4475
[9]  
Benson D. A., 1998, The fractional advection-dispersion equation: Development and application
[10]   Fractional differential equations with a Krasnoselskii-Krein type condition [J].
Bhaskar, T. Gnana ;
Lakshmikantham, V. ;
Leela, S. .
NONLINEAR ANALYSIS-HYBRID SYSTEMS, 2009, 3 (04) :734-737