Heterogeneous Molecular Catalysts of Metal Phthalocyanines for Electrochemical CO2 Reduction Reactions

被引:136
|
作者
Wu, Yueshen [1 ,2 ]
Liang, Yongye [3 ,4 ]
Wang, Hailiang [1 ,2 ]
机构
[1] Yale Univ, Dept Chem, New Haven, CT 06520 USA
[2] Yale Univ, Energy Sci Inst, West Haven, CT 06516 USA
[3] Southern Univ Sci & Technol, Dept Mat Sci & Engn, Shenzhen 518055, Peoples R China
[4] Southern Univ Sci & Technol, Guangdong Prov Key Lab Energy Mat Elect Power, Shenzhen 518055, Peoples R China
基金
美国国家科学基金会;
关键词
GAS-DIFFUSION ELECTRODES; CARBON-DIOXIDE; ELECTROCATALYTIC REDUCTION; ELECTROREDUCTION; COBALT; PERFORMANCE; CONVERSION; NANOTUBES;
D O I
10.1021/acs.accounts.1c00200
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Molecular catalysts, often deployed in homogeneous conditions, are favorable systems for structure-reactivity correlation studies of electrochemical reactions because of their well-defined active site structures and ease of mechanistic investigation. In pursuit of selective and active electrocatalysts for the CO2 reduction reactions which are promising for converting carbon emissions to useful fuels and chemical products, it is desirable to support molecular catalysts on substrates because heterogeneous catalysts can afford the high current density and operational convenience that practical electrolyzers require. Herein, we share our understanding in the development of heterogenized metal phthalocyanine catalysts for the electrochemical reduction of CO2. From the optimization of preparation methods and material structures for the electrocatalytic activity toward CO2 reduction to CO, we find that molecular-level dispersion of the active material and high electrical conductivity of the support are among the most important factors controlling the activity. The molecular nature of the active site enables mechanism-based optimization. We demonstrate how electron-withdrawing and -donating ligand substituents can be utilized to modify the redox property of the molecule and improve its catalytic activity and stability. Adjusting these factors further allows us to achieve electrochemical reduction of CO2 to methanol with appreciable activity, which has not been attainable by conventional molecular catalysts. The six-electron reduction process goes through CO as the key intermediate. Rapid and continuous electron delivery to the active site favors further reduction of CO to methanol. We also point out that, in homogeneous electrocatalysis where the catalyst molecules are dissolved in the electrolyte solution, even if the molecular structure remains intact, the actual catalysis may be dominated by molecules permanently adsorbed on the electrode surface and is thus heterogeneous in nature. This account uses our research on CO2 electroreduction reactions catalyzed by metal phthalocyanine molecules to illustrate our understanding about heterogeneous molecular electrocatalysis, which is also applicable to other electrochemical systems.
引用
收藏
页码:3149 / 3159
页数:11
相关论文
共 50 条
  • [1] Metal-free molecular catalysts for electrochemical CO2 reduction
    Fang, Ziyu
    Zhuang, Xiaodong
    JOULE, 2023, 7 (06) : 1101 - 1103
  • [2] Nanostructured heterogeneous catalysts for electrochemical reduction of CO2
    Gao, Dunfeng
    Cai, Fan
    Wang, Guoxiong
    Bao, Xinhe
    CURRENT OPINION IN GREEN AND SUSTAINABLE CHEMISTRY, 2017, 3 : 39 - 44
  • [3] Heterogeneous molecular catalysts for electrocatalytic CO2 reduction
    Nathan Corbin
    Joy Zeng
    Kindle Williams
    Karthish Manthiram
    Nano Research, 2019, 12 : 2093 - 2125
  • [4] Heterogeneous molecular catalysts for electrocatalytic CO2 reduction
    Corbin, Nathan
    Zeng, Joy
    Williams, Kindle
    Manthiram, Karthish
    NANO RESEARCH, 2019, 12 (09) : 2093 - 2125
  • [5] Metal Cluster Catalysts for Electrochemical CO2 Reduction
    Dinh, Khac Huy
    Menisa, Leta Takele
    Warkentin, Hugh
    Nguyen, Tu N.
    Dinh, Cao-Thang
    ACS CATALYSIS, 2025, 15 (07): : 5731 - 5759
  • [6] Heterogeneous catalysts for highly efficient electrochemical reduction of CO2
    Wang, Mingkui
    Jiang, Xingxing
    Wang, Xikui
    Shen, Yan
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2019, 258
  • [7] A review on the electrochemical reduction of CO2 in fuel cells, metal electrodes and molecular catalysts
    Lim, Rern Jern
    Xie, Mingshi
    Sk, Mahasin Alam
    Lee, Jong-Min
    Fisher, Adrian
    Wang, Xin
    Lim, Kok Hwa
    CATALYSIS TODAY, 2014, 233 : 169 - 180
  • [8] Transition metal macrocycles for heterogeneous electrochemical CO2 reduction
    Lv, Fang
    Han, Na
    Qiu, Yuan
    Liu, Xijun
    Luo, Jun
    Li, Yanguang
    COORDINATION CHEMISTRY REVIEWS, 2020, 422
  • [9] Design of pre-catalysts for heterogeneous CO2 electrochemical reduction
    He, Jingfu
    Wu, Chenghui
    Li, Yanming
    Li, Changli
    JOURNAL OF MATERIALS CHEMISTRY A, 2021, 9 (35) : 19508 - 19533
  • [10] New trends in the development of heterogeneous catalysts for electrochemical CO2 reduction
    Kumar, Bijandra
    Brian, Joseph P.
    Atla, Veerendra
    Kumari, Sudesh
    Bertram, Kari A.
    White, Robert T.
    Spurgeon, Joshua M.
    CATALYSIS TODAY, 2016, 270 : 19 - 30