Nonlinear evolution of cylindrical gravitational waves: Numerical method and physical aspects

被引:9
作者
Celestino, Juliana [1 ]
de Oliveira, H. P. [1 ,2 ]
Rodrigues, E. L. [3 ]
机构
[1] Univ Estado Rio de Janeiro, Dept Fis Teor, Inst Fis AD Tavares, R Sao Francisco Xavier 524, BR-20550013 Rio De Janeiro, RJ, Brazil
[2] Univ Pittsburgh, Dept Phys & Astron, 100 Allen Hall,3941 OHara St, Pittsburgh, PA 15260 USA
[3] Univ Fed Estado Rio de Janeiro, Inst Biociencias, Dept Ciencias Nat, Ave Pasteur,458 Urca, BR-22290040 Rio De Janeiro, RJ, Brazil
关键词
GENERAL-RELATIVITY; COLLAPSE; SYMMETRY; STRINGS; SYSTEMS; ENERGY; CAUCHY; SHELL; SPACE; DUST;
D O I
10.1103/PhysRevD.93.104018
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
General cylindrical waves are the simplest axisymmetrical gravitational waves that contain both + and x modes of polarization. In this paper, we have studied the evolution of general cylindrical gravitational waves in the realm of the characteristic scheme with a numerical code based on the Galerkin-Collocation method. The investigation consists of the numerical realization of concepts such as Bondi mass and the news functions adapted to cylindrical symmetry. The Bondi mass decays due to the presence of the news functions associated with both polarization modes. We have interpreted each polarization mode as channels from which mass is extracted. Under this perspective, we have presented the enhancement effect of the polarization mode + due to the nonlinear interaction with the mode x. After discussing the role of matter in cylindrical symmetry, we have extended the numerical code to include electromagnetic fields.
引用
收藏
页数:12
相关论文
共 50 条
[21]   On the integrability aspects of nonparaxial nonlinear Schrodinger equation and the dynamics of solitary waves [J].
Tamilselvan, K. ;
Kanna, T. ;
Govindarajan, A. .
PHYSICS LETTERS A, 2020, 384 (27)
[22]   A numerical method for imaging of biological microstructures by VHF waves [J].
Ala, Guido ;
Cassara, Pietro ;
Francomano, Elisa ;
Ganci, Salvatore ;
Caruso, Giuseppe ;
Gallo, Pio D. .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2014, 259 :805-814
[23]   Numerical modeling of nonlinear acoustic waves in a tube connected with Helmholtz resonators [J].
Lombard, Bruno ;
Mercier, Jean-Franois .
JOURNAL OF COMPUTATIONAL PHYSICS, 2014, 259 :421-443
[24]   Nonlinear Fourier Analysis: Rogue Waves in Numerical Modeling and Data Analysis [J].
Osborne, Alfred R. .
JOURNAL OF MARINE SCIENCE AND ENGINEERING, 2020, 8 (12) :1-73
[25]   Theoretical and numerical aspects of nonlinear reflection-transmission phenomena in acoustics [J].
Wojcik, Janusz ;
Gambin, Barbara .
APPLIED MATHEMATICAL MODELLING, 2017, 42 :100-113
[26]   NUMERICAL ASPECTS OF THE NONLINEAR SCHRODINGER EQUATION IN THE SEMICLASSICAL LIMIT IN A SUPERCRITICAL REGIME [J].
Carles, Remi ;
Mohammadi, Bijan .
ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 2011, 45 (05) :981-1008
[27]   Theoretical and numerical aspects of nonlinear reflection-transmission phenomena in acoustics [J].
Wojcik, Janusz ;
Gambin, Barbara .
APPLIED MATHEMATICAL MODELLING, 2017, 46 :771-784
[28]   An ensemble evolution numerical method for solving generalized density evolution equation [J].
Tao, Weifeng ;
Li, Jie .
PROBABILISTIC ENGINEERING MECHANICS, 2017, 48 :1-11
[29]   Numerical investigation on nonlinear vibration behavior of laminated cylindrical panel embedded with PZT layers [J].
Singh, Vijay K. ;
Panda, Subrata K. .
INTERNATIONAL CONFERENCE ON VIBRATION PROBLEMS 2015, 2016, 144 :660-667
[30]   The dynamics of nonlinear molecular waves in a (3+1)-dimensional nonlinear evolution equation in fluid mediums [J].
Yao, Xuemin ;
Wang, Lei .
NONLINEAR DYNAMICS, 2025, 113 (10) :11907-11920