Multiscale machine-learning interatomic potentials for ferromagnetic and liquid iron

被引:18
作者
Byggmastar, J. [1 ]
Nikoulis, G. [1 ]
Fellman, A. [1 ]
Granberg, F. [1 ]
Djurabekova, F. [1 ,2 ]
Nordlund, K. [1 ]
机构
[1] Univ Helsinki, Dept Phys, POB 43, FI-00014 Helsinki, Finland
[2] Helsinki Inst Phys, Helsinki, Finland
基金
芬兰科学院;
关键词
interatomic potential; machine learning; iron; TOTAL-ENERGY CALCULATIONS; MOLECULAR-DYNAMICS; SCREW DISLOCATIONS; CASCADE DAMAGE; SIMULATIONS; METALS; FE; APPROXIMATION; ANISOTROPY; ALUMINUM;
D O I
10.1088/1361-648X/ac6f39
中图分类号
O469 [凝聚态物理学];
学科分类号
070205 ;
摘要
A large and increasing number of different types of interatomic potentials exist, either based on parametrised analytical functions or machine learning. The choice of potential to be used in a molecular dynamics simulation should be based on the affordable computational cost and required accuracy. We develop and compare four interatomic potentials of different complexity for iron: a simple machine-learned embedded atom method (EAM) potential, a potential with machine-learned two- and three-body-dependent terms, a potential with machine-learned EAM and three-body terms, and a Gaussian approximation potential with the smooth overlap of atomic positions descriptor. All potentials are trained to the same diverse database of body-centred cubic and liquid structures computed with density functional theory. The first three potentials are tabulated and evaluated efficiently using cubic spline interpolations, while the fourth one is implemented without additional optimisation. The four potentials span three orders of magnitude in computational cost. We compare and discuss the advantages of each potential in terms of transferability and the balance between accuracy and computational cost.
引用
收藏
页数:14
相关论文
共 87 条
[1]   Two-band second moment model and an interatomic potential for caesium [J].
Ackland, GJ ;
Reed, SK .
PHYSICAL REVIEW B, 2003, 67 (17)
[2]   Computer simulation of point defect properties in dilute Fe-Cu alloy using a many-body interatomic potential [J].
Ackland, GJ ;
Bacon, DJ ;
Calder, AF ;
Harry, T .
PHILOSOPHICAL MAGAZINE A-PHYSICS OF CONDENSED MATTER STRUCTURE DEFECTS AND MECHANICAL PROPERTIES, 1997, 75 (03) :713-732
[3]   Development of an interatomic potential for phosphorus impurities in α-iron [J].
Ackland, GJ ;
Mendelev, MI ;
Srolovitz, DJ ;
Han, S ;
Barashev, AV .
JOURNAL OF PHYSICS-CONDENSED MATTER, 2004, 16 (27) :S2629-S2642
[4]   Elastic constants of monocrystal iron from 3 to 500 K [J].
Adams, J. J. ;
Agosta, D. S. ;
Leisure, R. G. ;
Ledbetter, H. .
JOURNAL OF APPLIED PHYSICS, 2006, 100 (11)
[5]   Ab initio scaling laws for the formation energy of nanosized interstitial defect clusters in iron, tungsten, and vanadium [J].
Alexander, R. ;
Marinica, M. -C. ;
Proville, L. ;
Willaime, F. ;
Arakawa, K. ;
Gilbert, M. R. ;
Dudarev, S. L. .
PHYSICAL REVIEW B, 2016, 94 (02)
[6]   Interatomic potentials for irradiation -induced defects in iron [J].
Alexander, Rebecca ;
Proville, Laurent ;
Becquart, Charlotte S. ;
Goryeava, Alexandra M. ;
Deres, Julien ;
Lapointe, Clovis ;
Marinica, Mihai-Cosmin .
JOURNAL OF NUCLEAR MATERIALS, 2020, 535
[7]   Quantitative modeling of the equilibration of two-phase solid-liquid Fe by atomistic simulations on diffusive time scales [J].
Asadi, Ebrahim ;
Zaeem, Mohsen Asle ;
Nouranian, Sasan ;
Baskes, Michael I. .
PHYSICAL REVIEW B, 2015, 91 (02)
[8]   Reference data for the density and viscosity of liquid aluminum and liquid iron [J].
Assael, MJ ;
Kakosimos, K ;
Banish, RM ;
Brillo, J ;
Egry, I ;
Brooks, R ;
Quested, PN ;
Mills, KC ;
Nagashima, A ;
Sato, Y ;
Wakeham, WA .
JOURNAL OF PHYSICAL AND CHEMICAL REFERENCE DATA, 2006, 35 (01) :285-300
[9]   Machine Learning a General-Purpose Interatomic Potential for Silicon [J].
Bartok, Albert P. ;
Kermode, James ;
Bernstein, Noam ;
Csanyi, Gabor .
PHYSICAL REVIEW X, 2018, 8 (04)
[10]   Gaussian approximation potentials: A brief tutorial introduction [J].
Bartok, Albert P. ;
Csanyi, Gabor .
INTERNATIONAL JOURNAL OF QUANTUM CHEMISTRY, 2015, 115 (16) :1051-1057