Kraken: Memory-Efficient Continual Learning for Large-Scale Real-Time Recommendations

被引:16
|
作者
Xie, Minhui [1 ]
Ren, Kai [2 ]
Lu, Youyou [1 ]
Yang, Guangxu [2 ]
Xu, Qingxing [2 ]
Wu, Bihai [2 ]
Lin, Jiazhen [1 ]
Ao, Hongbo [2 ]
Xu, Wanhong [2 ]
Shu, Jiwu [1 ]
机构
[1] Tsinghua Univ, Dept Comp Sci & Technol, Beijing, Peoples R China
[2] Kuaishou Technol, Beijing, Peoples R China
来源
PROCEEDINGS OF SC20: THE INTERNATIONAL CONFERENCE FOR HIGH PERFORMANCE COMPUTING, NETWORKING, STORAGE AND ANALYSIS (SC20) | 2020年
基金
中国国家自然科学基金;
关键词
Systems for Machine Learning; Continual Learning; Recommendation System;
D O I
10.1109/SC41405.2020.00025
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Modern recommendation systems in industry often use deep learning (DL) models that achieve better model accuracy with more data and model parameters. However, current open-source DL frameworks, such as TensorFiow and PyTorch, show relatively low scalability on training recommendation models with terabytes of parameters. To efficiently learn large-scale recommendation models from data streams that generate hundreds of terabytes training data daily, we introduce a continual learning system called Kraken. Kraken contains a special parameter server implementation that dynamically adapts to the rapidly changing set of sparse features for the continual training and serving of recommendation models. Kraken provides a sparsity-aware training system that uses different learning optimizers for dense and sparse parameters to reduce memory overhead. Extensive experiments using real-world datasels confirm the effectiveness and scalability of Kraken. Kraken can benefit the accuracy of recommendation tasks with the same memory resources, or trisect the memory usage while keeping model performance.
引用
收藏
页数:17
相关论文
共 50 条
  • [1] Memory-Efficient Learning for Large-Scale Computational Imaging
    Kellman, Michael
    Zhang, Kevin
    Markley, Eric
    Tamir, Jon
    Bostan, Emrah
    Lustig, Michael
    Waller, Laura
    IEEE TRANSACTIONS ON COMPUTATIONAL IMAGING, 2020, 6 : 1403 - 1414
  • [2] Memory-efficient detection of large-scale obfuscated malware
    Wang Y.
    Zhang M.
    International Journal of Wireless and Mobile Computing, 2024, 26 (01) : 48 - 60
  • [3] Lazer: Distributed Memory-Efficient Assembly of Large-Scale Genomes
    Goswami, Sayan
    Das, Arghya Kusum
    Platania, Richard
    Lee, Kisung
    Park, Seung-Jong
    2016 IEEE INTERNATIONAL CONFERENCE ON BIG DATA (BIG DATA), 2016, : 1171 - 1181
  • [4] Memory-efficient Large-scale Linear Support Vector Machine
    Alrajeh, Abdullah
    Takeda, Akiko
    Niranjan, Mahesan
    SEVENTH INTERNATIONAL CONFERENCE ON MACHINE VISION (ICMV 2014), 2015, 9445
  • [5] Memory-Efficient Network for Large-scale Video Compressive Sensing
    Cheng, Ziheng
    Chen, Bo
    Liu, Guanliang
    Zhang, Hao
    Lu, Ruiying
    Wang, Zhengjue
    Yuan, Xin
    2021 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION, CVPR 2021, 2021, : 16241 - 16250
  • [6] Memory-Efficient Pipelined Architecture for Large-Scale String Matching
    Yang, Yi-Hua E.
    Prasanna, Viktor K.
    PROCEEDINGS OF THE 2009 17TH IEEE SYMPOSIUM ON FIELD PROGRAMMABLE CUSTOM COMPUTING MACHINES, 2009, : 104 - 111
  • [7] Scalable and Memory-Efficient Clustering of Large-Scale Social Networks
    Whang, Joyce Jiyoung
    Sui, Xin
    Dhillon, Inderjit S.
    12TH IEEE INTERNATIONAL CONFERENCE ON DATA MINING (ICDM 2012), 2012, : 705 - 714
  • [8] Online Matching: A Real-time Bandit System for Large-scale Recommendations
    Yi, Xinyang
    Wang, Shao-Chuan
    He, Ruining
    Chandrasekaran, Hariharan
    Wu, Charles
    Heldt, Lukasz
    Hong, Lichan
    Chen, Minmin
    Chi, Ed H.
    PROCEEDINGS OF THE 17TH ACM CONFERENCE ON RECOMMENDER SYSTEMS, RECSYS 2023, 2023, : 403 - 414
  • [9] Synthesis of Memory-Efficient Real-Time Controllers for Safety Objectives
    Chatterjee, Krishnendu
    Prabhu, Vinayak S.
    HSCC 11: PROCEEDINGS OF THE 14TH INTERNATIONAL CONFERENCE ON HYBRID SYSTEMS: COMPUTATION AND CONTROL, 2011, : 221 - 230
  • [10] Memory-Efficient Continual Learning Object Segmentation for Long Videos
    Nazemi, Amir
    Shafiee, Mohammad Javad
    Gharaee, Zahra
    Fieguth, Paul
    IEEE ACCESS, 2024, 12 : 97067 - 97084