Computational Guidance Using Sparse Gauss-Hermite Quadrature Differential Dynamic Programming

被引:8
|
作者
He, Shaoming [1 ]
Shin, Hyo-Sang [1 ]
Tsourdos, Antonios [1 ]
机构
[1] Cranfield Univ, Sch Aerosp Transport & Mfg, Cranfield MK43 0AL, Beds, England
来源
IFAC PAPERSONLINE | 2019年 / 52卷 / 12期
关键词
Computational guidance; Differential dynamic programming; Sparse Gauss-Hermite quadrature; Impact angle; Impact time; ANGLE; FILTER;
D O I
10.1016/j.ifacol.2019.11.062
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper proposes a new computational guidance algorithm using differential dynamic programming and sparse Gauss-Hermite quadrature rule. By the application of sparse Gauss-Hermite quadrature rule, numerical differentiation in the calculation of Hessian matrices and gradients in differential dynamic programming is avoided. Based on the new differential dynamic programming approach developed, a three-dimensional computational algorithm is proposed to control the impact angle and impact time for an air-to-surface interceptor. Extensive numerical simulations are performed to show the effectiveness of the proposed approach. Copyright (C) 2019. The Authors. Published by Elsevier Ltd. All rights reserved.
引用
收藏
页码:13 / 18
页数:6
相关论文
共 50 条
  • [41] Gauss-Hermite quadrature approximation for estimation in generalised linear mixed models
    Pan, JX
    Thompson, R
    COMPUTATIONAL STATISTICS, 2003, 18 (01) : 57 - 78
  • [42] On-node lattices construction using partial Gauss-Hermite quadrature for the lattice Boltzmann method
    Ye, Huanfeng
    Gan, Zecheng
    Kuang, Bo
    Yang, Yanhua
    CHINESE PHYSICS B, 2019, 28 (05)
  • [43] SUBOPTIMALITY OF GAUSS-HERMITE QUADRATURE AND OPTIMALITY OF THE TRAPEZOIDAL RULE FOR FUNCTIONS WITH FINITE SMOOTHNESS*
    Kazashi, Yoshihito
    Suzuki, Yuya
    Goda, Takashi
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2023, 61 (03) : 1426 - 1448
  • [44] Target Tracking Algorithm based on Gauss-Hermite Quadrature in Passive Sensor Array
    Hao, Run-ze
    Huang, Jing-xiong
    Li, Liang-qun
    ICSP: 2008 9TH INTERNATIONAL CONFERENCE ON SIGNAL PROCESSING, VOLS 1-5, PROCEEDINGS, 2008, : 2625 - +
  • [45] Using an approximation of the three-point Gauss-Hermite quadrature formula for model prediction and quantification of uncertainty
    Levy, J
    Clayton, MK
    Chesters, G
    HYDROGEOLOGY JOURNAL, 1998, 6 (04) : 457 - 468
  • [46] Fast and simple method for pricing exotic options using Gauss-Hermite quadrature on a cubic spline interpolation
    Luo, Xiaolin
    Shevchenko, Pavel V.
    INTERNATIONAL JOURNAL OF FINANCIAL ENGINEERING, 2014, 1 (04):
  • [47] A NEW TABLE FOR A MODIFIED (HALF-RANGE) GAUSS-HERMITE QUADRATURE WITH AN EVALUATION OF INTEGRAL
    HUANG, AB
    GIDDENS, DP
    JOURNAL OF MATHEMATICS AND PHYSICS, 1968, 47 (02): : 213 - &
  • [48] Gauss-Hermite Quadrature for non-Gaussian Inference via an Importance Sampling Interpretation
    Elvira, Victor
    Closas, Pau
    Martino, Luca
    2019 27TH EUROPEAN SIGNAL PROCESSING CONFERENCE (EUSIPCO), 2019,
  • [49] Use of Gauss-Hermite quadrature in the treatment of predissociation resonances with the complex-scaling method
    Li, Y
    Bludsky, O
    Hirsch, G
    Buenker, RJ
    JOURNAL OF CHEMICAL PHYSICS, 1997, 107 (08): : 3014 - 3020
  • [50] Use of Gauss-Hermite Quadrature to Approximate the Asymptotic Behavior of Vibronic Resonance Wave Functions
    Buenker, R. J.
    Li, Y.
    Liebermann, H. -P.
    Honigmann, M.
    RUSSIAN JOURNAL OF PHYSICAL CHEMISTRY B, 2011, 5 (06) : 907 - 914