Weighted inverse minimum spanning tree problems under Hamming distance

被引:56
作者
He, Y [1 ]
Zhang, BW [1 ]
Yao, EY [1 ]
机构
[1] Zhejiang Univ, Dept Math, State Key Lab CAD & CG, Hangzhou 310027, Peoples R China
基金
中国国家自然科学基金;
关键词
minimum spanning tree; inverse problem; strongly polynomial algorithm;
D O I
10.1007/s10878-005-5486-1
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
In this paper, we consider weighted inverse minimum spanning tree problems under Hamming distance. Three models are considered: unbounded case, unbounded case with forbidden edges, and general bounded case. In terms of the method for minimum-weight node cover problem on bipartite graph, we present their respective strongly polynomial algorithms.
引用
收藏
页码:91 / 100
页数:10
相关论文
共 11 条
[1]   A faster algorithm for the inverse spanning tree problem [J].
Ahuja, RK ;
Orlin, JB .
JOURNAL OF ALGORITHMS-COGNITION INFORMATICS AND LOGIC, 2000, 34 (01) :177-193
[2]  
Ahuja RK, 1993, NETWORK FLOWS THEORY
[3]   Inverse combinatorial optimization: A survey on problems, methods, and results [J].
Heuberger, C .
JOURNAL OF COMBINATORIAL OPTIMIZATION, 2004, 8 (03) :329-361
[4]  
Lawler E., 1976, Combinatorial Optimization: Networks and Matroids
[5]  
LI BY, 2000, THESIS ZHEJIANG U HA
[6]  
MOTWANI R, 2000, LECT NOTES STANFORD
[7]   Solving inverse spanning tree problems through network flow techniques [J].
Sokkalingam, PT ;
Ahuja, RK ;
Orlin, JB .
OPERATIONS RESEARCH, 1999, 47 (02) :291-298
[8]  
ZHANG J, 1996, MATH METHOD OPER RES, V44, P171
[9]   An algorithm for inverse minimum spanning tree problem [J].
Zhang, JH ;
Xu, SJ ;
Ma, ZF .
OPTIMIZATION METHODS & SOFTWARE, 1997, 8 (01) :69-84
[10]   A general model of some inverse combinatorial optimization problems and its solution method under l∞ norm [J].
Zhang, JZ ;
Liu, ZH .
JOURNAL OF COMBINATORIAL OPTIMIZATION, 2002, 6 (02) :207-227