Hearts and towers in stable ∞-categories

被引:0
|
作者
Fiorenza, Domenico [1 ]
Loregian, Fosco [2 ]
Marchetti, Giovanni Luca [3 ]
机构
[1] Univ Roma La Sapienza, Dipartimento Matemat Guido Castelnuovo, Rome, Italy
[2] Max Planck Inst Math, Bonn, Germany
[3] Univ Sheffield, Sch Math & Stat, Sheffield, S Yorkshire, England
关键词
Stable infinity-categories; Triangulated categories; t-structures; Tilting theory; Semiorthogonal decompositions; Stability conditions on triangulated categories; STABILITY;
D O I
10.1007/s40062-019-00237-0
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We exploit the equivalence between t-structures and normal torsion theories on a stable infinity-category to show how a few classical topics in the theory of triangulated categories, i.e., the characterization of bounded t-structures in terms of their hearts, their associated cohomology functors, semiorthogonal decompositions, and the theory of tiltings, as well as the more recent notion of Bridgeland's slicings, are all particular instances of a single construction, namely, the tower of a morphism associated with a J-slicing of a stable infinity-category C, where J is a totally ordered set equipped with a monotone Z-action.
引用
收藏
页码:993 / 1042
页数:50
相关论文
共 50 条
  • [1] Hearts and towers in stable ∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\infty $$\end{document}-categories
    Domenico Fiorenza
    Fosco Loregian
    Giovanni Luca Marchetti
    Journal of Homotopy and Related Structures, 2019, 14 (4) : 993 - 1042
  • [2] Realizing stable categories as derived categories
    Yamaura, Kota
    ADVANCES IN MATHEMATICS, 2013, 248 : 784 - 819
  • [3] Hearts of twin cotorsion pairs on exact categories
    Liu, Yu
    JOURNAL OF ALGEBRA, 2013, 394 : 245 - 284
  • [4] On triangle equivalences of stable categories
    Di, Zhenxing
    Liu, Zhongkui
    Wei, Jiaqun
    PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 2020, 150 (02) : 955 - 974
  • [5] TORSION PAIRS IN STABLE CATEGORIES
    Zhou, Panyue
    Xu, Jinde
    Ouyang, Baiyu
    COMMUNICATIONS IN ALGEBRA, 2015, 43 (08) : 3498 - 3514
  • [6] Relative stable categories and birationality
    Balmer, Paul
    Stevenson, Greg
    JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 2021, 104 (04): : 1765 - 1794
  • [7] Abelian Hearts of Twin Cotorsion Pairs on Extriangulated Categories
    Huang, Qiong
    Zhou, Panyue
    ALGEBRA COLLOQUIUM, 2023, 30 (03) : 449 - 466
  • [8] STABLE CATEGORIES OF COHEN-MACAULAY MODULES AND CLUSTER CATEGORIES
    Amiot, Claire
    Iyama, Osamu
    Reiten, Idun
    AMERICAN JOURNAL OF MATHEMATICS, 2015, 137 (03) : 813 - 857
  • [9] Functorially finite hearts, simple-minded systems in negative cluster categories, and noncrossing partitions
    Simoes, Raquel Coelho
    Pauksztello, David
    Ploog, David
    Zvonareva, Alexandra
    COMPOSITIO MATHEMATICA, 2022, 158 (01) : 211 - 243
  • [10] t-Structures with Grothendieck hearts via functor categories
    Saorin, Manuel
    Stovicek, Jan
    SELECTA MATHEMATICA-NEW SERIES, 2023, 29 (05):