Texture analysis and machine learning algorithms accurately predict histologic grade in small (< 4 cm) clear cell renal cell carcinomas: a pilot study

被引:16
作者
Haji-Momenian, Shawn [1 ]
Lin, Zixian [2 ]
Patel, Bhumi [1 ]
Law, Nicole [1 ]
Michalak, Adam [3 ]
Nayak, Anishsanjay [2 ]
Earls, James [1 ]
Loew, Murray [2 ]
机构
[1] George Washington Univ Hosp, Dept Radiol, 900 23rd St NW, Washington, DC 20037 USA
[2] George Washington Univ, Dept Biomed Engn, 800 22nd St NW,5000 Sci & Engn Hall, Washington, DC 20052 USA
[3] Univ Pittsburgh Med Ctr UPMC Altoona, Dept Family Med, 501 Howard Ave,Suite F2, Altoona, PA 16601 USA
关键词
Clear cell renal cell carcinoma; Machine learning; Texture; Histology; TUMOR HETEROGENEITY; DIAGNOSTIC PERFORMANCE; RADIOMICS FEATURES; MASS; PARAMETERS; PATHOLOGY; BIOPSY; SIZE;
D O I
10.1007/s00261-019-02336-1
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
Purpose To predict the histologic grade of small clear cell renal cell carcinomas (ccRCCs) using texture analysis and machine learning algorithms. Methods Fifty-two noncontrast (NC), 26 corticomedullary (CM) phase, and 35 nephrographic (NG) phase CTs of small (< 4 cm) surgically resected ccRCCs were retrospectively identified. Surgical pathology classified the tumors as low- or high-Fuhrman histologic grade. The axial image with the largest cross-sectional tumor area was exported and segmented. Six histogram and 31 texture (gray-level co-occurrences (GLC) and gray-level run-lengths (GLRL)) features were calculated for each tumor in each phase. T testing compared feature values in low- and high-grade ccRCCs, with a (Benjamini-Hochberg) false discovery rate of 10%. Area under the receiver operating curve (AUC) was calculated for each feature to assess prediction of low- and high-grade ccRCCs in each phase. Histogram, texture, and combined histogram and texture data sets were used to train and test four algorithms (k-nearest neighbor (KNN), support vector machine (SVM), random forests, and decision tree) with tenfold cross-validation; AUCs were calculated for each algorithm in each phase to assess prediction of low- and high-grade ccRCCs. Results Zero, 23, and 0 features in the NC, CM, and NG phases had statistically significant differences between low and high-grade ccRCCs. CM histogram skewness and GLRL short run emphasis had the highest AUCs (0.82) in predicting histologic grade. All four algorithms had the highest AUCs (0.97) predicting histologic grade using CM histogram features. The algorithms' AUCs decreased using histogram or texture features from NC or NG phases. Conclusion The histologic grade of small ccRCCs can be accurately predicted with machine learning algorithms using CM histogram features, which outperform NC and NG phase image data.
引用
收藏
页码:789 / 798
页数:10
相关论文
共 44 条
[1]   Vascular Endothelial Growth Factor-Targeted Therapies in Advanced Renal Cell Carcinoma [J].
Albiges, Laurence ;
Salem, Mohamed ;
Rini, Brian ;
Escudier, Bernard .
HEMATOLOGY-ONCOLOGY CLINICS OF NORTH AMERICA, 2011, 25 (04) :813-+
[2]   Grade Heterogeneity in Small Renal Masses: Potential Implications for Renal Mass Biopsy [J].
Ball, Mark W. ;
Bezerra, Stephania M. ;
Gorin, Michael A. ;
Cowan, Morgan ;
Pavlovich, Christian P. ;
Pierorazio, Phillip M. ;
Netto, George J. ;
Allaf, Mohamad E. .
JOURNAL OF UROLOGY, 2015, 193 (01) :36-40
[3]   Critical analysis of a simplified Fuhrman grading scheme for prediction of cancer specific mortality in patients with clear cell renal cell carcinoma - Impact on prognosis [J].
Becker, A. ;
Hickmann, D. ;
Hansen, J. ;
Meyer, C. ;
Rink, M. ;
Schmid, M. ;
Eichelberg, C. ;
Strini, K. ;
Chromecki, T. ;
Jesche, J. ;
Regier, M. ;
Randazzo, M. ;
Tilki, D. ;
Ahyai, S. ;
Dahlem, R. ;
Fisch, M. ;
Zigeuner, R. ;
Chun, F. K. H. .
EJSO, 2016, 42 (03) :419-425
[4]   Percutaneous Biopsy of Renal Cell Carcinoma Underestimates Nuclear Grade [J].
Blumenfeld, Aaron J. ;
Guru, Khurshid ;
Fuchs, Gerhard J. ;
Kim, Hyung L. .
UROLOGY, 2010, 76 (03) :610-613
[5]   Quantitative Assessment of Variation in CT Parameters on Texture Features: Pilot Study Using a Nonanatomic Phantom [J].
Buch, K. ;
Li, B. ;
Qureshi, M. M. ;
Kuno, H. ;
Anderson, S. W. ;
Sakai, O. .
AMERICAN JOURNAL OF NEURORADIOLOGY, 2017, 38 (05) :981-985
[6]   Renal Mass and Localized Renal Cancer: AUA Guideline [J].
Campbell, Steven ;
Uzzo, Robert G. ;
Allaf, Mohamad E. ;
Bass, Eric B. ;
Cadeddu, Jeffrey A. ;
Chang, Anthony ;
Clark, Peter E. ;
Davis, Brian J. ;
Derweesh, Ithaar H. ;
Giambarresi, Leo ;
Gervais, Debra A. ;
Hu, Susie L. ;
Lane, Brian R. ;
Leibovich, Bradley C. ;
Pierorazio, Philip M. .
JOURNAL OF UROLOGY, 2017, 198 (03) :520-529
[7]   Diagnostic Accuracy of Multiparametric Magnetic Resonance Imaging to Identify Clear Cell Renal Cell Carcinoma in cT1a Renal Masses [J].
Canvasser, Noah E. ;
Kay, Fernando U. ;
Xi, Yin ;
Pinho, Daniella F. ;
Costa, Daniel ;
de Leon, Alberto Diaz ;
Khatri, Gaurav ;
Leyendecker, John R. ;
Yokoo, Takeshi ;
Lay, Aaron ;
Kavoussi, Nicholas ;
Koseoglu, Ersin ;
Cadeddu, Jeffrey A. ;
Pedrosa, Ivan .
JOURNAL OF UROLOGY, 2017, 198 (04) :780-786
[8]   Deep Learning: A Primer for Radiologists [J].
Chartrand, Gabriel ;
Cheng, Phillip M. ;
Vorontsov, Eugene ;
Drozdzal, Michal ;
Turcotte, Simon ;
Pal, Christopher J. ;
Kadoury, Samuel ;
Tang, An .
RADIOGRAPHICS, 2017, 37 (07) :2113-2131
[9]   Differentiation of low- and high-grade clear cell renal cell carcinoma: Tumor size versus CT perfusion parameters [J].
Chen, Chao ;
Kang, Qinqin ;
Xu, Bing ;
Guo, Hairuo ;
Wei, Qiang ;
Wang, Tiegong ;
Ye, Hui ;
Wu, Xinhuai .
CLINICAL IMAGING, 2017, 46 :14-19
[10]   Small (&lt;4 cm) clear cell renal cell carcinoma: correlation between CT findings and histologic grade [J].
Choi, Soo Yeon ;
Sung, Deuk Jae ;
Yang, Kyung Sook ;
Kim, Kyeong Ah ;
Yeom, Suk Keu ;
Sim, Ki Choon ;
Han, Na Yeon ;
Park, Beom Jin ;
Kim, Min Ju ;
Cho, Sung Bum ;
Lee, Jeong Hyeon .
ABDOMINAL RADIOLOGY, 2016, 41 (06) :1160-1169