Dry deposition of reactive nitrogen to European ecosystems: a comparison of inferential models across the NitroEurope network

被引:211
作者
Flechard, C. R. [1 ]
Nemitz, E. [2 ]
Smith, R. I. [2 ]
Fowler, D. [2 ]
Vermeulen, A. T. [3 ]
Bleeker, A. [3 ]
Erisman, J. W. [3 ]
Simpson, D. [4 ,5 ]
Zhang, L. [6 ]
Tang, Y. S. [2 ]
Sutton, M. A. [2 ]
机构
[1] INRA, UMR SAS 1069, F-35042 Rennes, France
[2] CEH Edinburgh, Penicuik, Midlothian, Scotland
[3] Netherlands Energy Res Fdn, ECN, NL-1755 ZG Petten, Netherlands
[4] Norwegian Meteorol Inst, EMEP MSC W, Oslo, Norway
[5] Chalmers Univ Technol, Dept Earth & Space Sci, S-41296 Gothenburg, Sweden
[6] Environm Canada, Toronto, ON, Canada
关键词
BIDIRECTIONAL AMMONIA EXCHANGE; BIOSPHERE-ATMOSPHERE EXCHANGE; COMPENSATION POINT; OXIDIZED NITROGEN; VEGETATIVE CANOPIES; PARTICLE DEPOSITION; SURFACE EXCHANGE; OZONE DEPOSITION; REDUCED NITROGEN; SULFUR-DIOXIDE;
D O I
10.5194/acp-11-2703-2011
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Inferential models have long been used to determine pollutant dry deposition to ecosystems from measurements of air concentrations and as part of national and regional atmospheric chemistry and transport models, and yet models still suffer very large uncertainties. An inferential network of 55 sites throughout Europe for atmospheric reactive nitrogen (N-r) was established in 2007, providing ambient concentrations of gaseous NH3, NO2, HNO3 and HONO and aerosol NH4+ and NO3- as part of the NitroEurope Integrated Project. Network results providing modelled inorganic Nr dry deposition to the 55 monitoring sites are presented, using four existing dry deposition routines, revealing inter-model differences and providing ensemble average deposition estimates. Dry deposition is generally largest over forests in regions with large ambient NH3 concentrations, exceeding 30-40 kg N ha(-1) yr(-1) over parts of the Netherlands and Belgium, while some remote forests in Scandinavia receive less than 2 kg N ha(-1) yr(-1). Turbulent Nr deposition to short vegetation ecosystems is generally smaller than to forests due to reduced turbulent exchange, but also because NH3 inputs to fertilised, agricultural systems are limited by the presence of a substantial NH3 source in the vegetation, leading to periods of emission as well as deposition. Differences between models reach a factor 2-3 and are often greater than differences between monitoring sites. For soluble Nr gases such as NH3 and HNO3, the non-stomatal pathways are responsible for most of the annual uptake over many surfaces, especially the non-agricultural land uses, but parameterisations of the sink strength vary considerably among models. For aerosol NH4+ and NO3-, discrepancies between theoretical models and field flux measurements lead to much uncertainty in dry deposition rates for fine particles (0.1-0.5 mu m). The validation of inferential models at the ecosystem scale is best achieved by comparison with direct long-term micrometeorological Nr flux measurements, but too few such datasets are available, especially for HNO3 and aerosol NH4+ and NO3-.
引用
收藏
页码:2703 / 2728
页数:26
相关论文
共 108 条
[71]   The dry deposition of particles to a forest canopy: A comparison of model and experimental results [J].
Ruijgrok, W ;
Tieben, H ;
Eisinga, P .
ATMOSPHERIC ENVIRONMENT, 1997, 31 (03) :399-415
[72]   Physiological parameters controlling plant-atmosphere ammonia exchange [J].
Schjoerring, JK ;
Husted, S ;
Mattsson, M .
ATMOSPHERIC ENVIRONMENT, 1998, 32 (03) :491-498
[73]   An intercomparison of the deposition models used in the CASTNET and CAPMoN networks [J].
Schwede, Donna ;
Zhang, Leiming ;
Vet, Robert ;
Lear, Gary .
ATMOSPHERIC ENVIRONMENT, 2011, 45 (06) :1337-1346
[74]   Deposition and emissions of reactive nitrogen over European forests: A modelling study [J].
Simpson, D. ;
Butterbach-Bahl, K. ;
Fagerli, H. ;
Kesik, M. ;
Skiba, U. ;
Tang, S. .
ATMOSPHERIC ENVIRONMENT, 2006, 40 (29) :5712-5726
[75]   Comparison of modelled and monitored deposition fluxes of sulphur and nitrogen to ICP-forest sites in Europe [J].
Simpson, D. ;
Fagerli, H. ;
Hellsten, S. ;
Knulst, J. C. ;
Westling, O. .
BIOGEOSCIENCES, 2006, 3 (03) :337-355
[76]  
SIMPSON D, 2010, 12010 EMEP NORW MET, P105
[77]  
Simpson D., 2003, TRANSBOUNDARY ACIDIF
[78]   PREDICTIONS FOR PARTICLE DEPOSITION TO VEGETATIVE CANOPIES [J].
SLINN, WGN .
ATMOSPHERIC ENVIRONMENT, 1982, 16 (07) :1785-1794
[79]   Regional estimation of pollutant gas dry deposition in the UK: model description, sensitivity analyses and outputs [J].
Smith, RI ;
Fowler, D ;
Sutton, MA ;
Flechard, C ;
Coyle, M .
ATMOSPHERIC ENVIRONMENT, 2000, 34 (22) :3757-3777
[80]   Nitrogen oxide measurements at rural sites in Switzerland:: Bias of conventional measurement techniques [J].
Steinbacher, M. ;
Zellweger, C. ;
Schwarzenbach, B. ;
Bugmann, S. ;
Buchmann, B. ;
Ordonez, C. ;
Prevot, A. S. H. ;
Hueglin, C. .
JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 2007, 112 (D11)