FOXP3+ regulatory T cells: control of FOXP3 expression by pharmacological agents

被引:54
|
作者
Ohkura, Naganari [1 ,2 ]
Hamaguchi, Masahide [1 ,2 ]
Sakaguchi, Shimon [1 ,2 ]
机构
[1] Kyoto Univ, Inst Frontier Med Sci, Dept Expt Pathol, Kyoto 6068507, Japan
[2] Osaka Univ, WPI Immunol Frontier Res Ctr, Suita, Osaka 5650871, Japan
关键词
BREAST-CANCER PATIENTS; MEDIATED SUPPRESSION; IMMUNE-RESPONSES; DENDRITIC CELLS; RETINOIC ACID; IN-VIVO; CO-STIMULATION; TUMOR-IMMUNITY; GRANZYME-B; DIFFERENTIATION;
D O I
10.1016/j.tips.2010.12.004
中图分类号
R9 [药学];
学科分类号
1007 ;
摘要
Naturally arising CD4(+)CD25(+) regulatory T cells (Tregs), which specifically express the forkhead family transcription factor FOXP3, are essential for the maintenance of immunological self-tolerance and immune homeostasis. Tregs can suppress the activation, proliferation and effector function of other lymphocytes in physiological and pathological immune responses. Therefore, control of the development, survival, and function of Tregs is instrumental for effective control of immune responses. For example, cytokines such as interleukin-2 and transforming growth factor-beta, monoclonal antibodies to the Treg-associated molecules such as interleukin-2 receptor alpha chain and cytotoxic T lymphocyte-associated 4, and pharmacological agents that alter signaling pathways for Treg function, can augment or dampen the suppressive activity of Tregs. How these agents control the function of Tregs at the molecular level remains to be elucidated. However, it is envisaged that pharmacological control of the function and development of Tregs by targeting FOXP3 or Treg-associated molecules will enable better control of immune responses in various clinical settings.
引用
收藏
页码:158 / 166
页数:9
相关论文
共 50 条
  • [1] Plasticity of Foxp3+ T Cells Reflects Promiscuous Foxp3 Expression in Conventional T Cells but Not Reprogramming of Regulatory T Cells
    Miyao, Takahisa
    Floess, Stefan
    Setoguchi, Ruka
    Luche, Herve
    Fehling, Hans Joerg
    Waldmann, Herman
    Huehn, Jochen
    Hori, Shohei
    IMMUNITY, 2012, 36 (02) : 262 - 275
  • [2] Thymic production of human FOXP3+ regulatory T cells is stable but does not correlate with peripheral FOXP3 expression
    Tuovinen, Heli
    Laurinolli, Tuisku-Tuulia
    Rossi, Laura H.
    Pekkarinen, Pirkka T.
    Mattila, Ilkka
    Arstila, T. Petteri
    IMMUNOLOGY LETTERS, 2008, 117 (02) : 146 - 153
  • [3] Helios expression in FoxP3+ T regulatory cells
    Elkord, Eyad
    Al-Ramadi, Basel K.
    EXPERT OPINION ON BIOLOGICAL THERAPY, 2012, 12 (11) : 1423 - 1425
  • [4] Epigenetic control of stable Foxp3 expression in regulatory T cells
    Huehn, J.
    IMMUNOLOGY, 2013, 140 : 4 - 4
  • [5] Regulatory T cells and Foxp3
    Rudensky, Alexander Y.
    IMMUNOLOGICAL REVIEWS, 2011, 241 : 260 - 268
  • [6] FOXP3 expression in FOXP3+ tumor cells promotes hepatocellular cells metastasis
    Zhang, Henghui
    Chen, Yanhui
    Liao, Weijia
    Wang, Li
    Xie, Xingwang
    Fei, Ran
    Wang, Xueyan
    Mei, Minghui
    Wei, Lai
    Chen, Hongsong
    TRANSLATIONAL CANCER RESEARCH, 2020, 9 (10) : 5868 - 5881
  • [7] Hyperthermia regulates FOXP3 expression in human FOXP3+regulatory T cells
    Dat Tran
    JOURNAL OF IMMUNOLOGY, 2012, 188
  • [8] Foxp3+ Regulatory T Cells in Tuberculosis
    Larson, Ryan P.
    Shafiani, Shahin
    Urdahl, Kevin B.
    NEW PARADIGM OF IMMUNITY TO TUBERCULOSIS, 2013, 783 : 165 - 180
  • [9] Epigenetic and transcriptional control of Foxp3+ regulatory T cells
    Huehn, Jochen
    Beyer, Marc
    SEMINARS IN IMMUNOLOGY, 2015, 27 (01) : 10 - 18
  • [10] DNA demethylation in the human FOXP3 locus discriminates regulatory T cells from activated FOXP3+ conventional T cells
    Baron, Udo
    Floess, Stefan
    Wieczorek, Georg
    Baumann, Katrin
    Gruetzkau, Andreas
    Dong, Jun
    Thiel, Andreas
    Boeld, Tina J.
    Hoffmann, Petra
    Edinger, Matthias
    Tuerbachova, Ivana
    Hamann, Alf
    Olek, Sven
    Huehn, Jochen
    EUROPEAN JOURNAL OF IMMUNOLOGY, 2007, 37 (09) : 2378 - 2389