On the initial value problem for the two-coupled Camassa-Holm system in Besov spaces

被引:1
|
作者
Wang, Haiquan [1 ]
Chong, Gezi [1 ]
机构
[1] Northwest Univ, Sch Math, Xian 710069, Peoples R China
来源
MONATSHEFTE FUR MATHEMATIK | 2020年 / 193卷 / 02期
关键词
The two-coupled Camassa-Holm system; Non-uniformly continuous dependence; Holder continuity; Besov spaces; SHALLOW-WATER EQUATION; WELL-POSEDNESS; NONUNIFORM DEPENDENCE; PARTICLE TRAJECTORIES; GLOBAL EXISTENCE; BREAKING WAVES; CAUCHY-PROBLEM;
D O I
10.1007/s00605-020-01385-9
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Considered herein is the Cauchy problem for the two-coupled Camassa-Holm system. Based on the local well-posedness results for this problem, it is shown that the solution map z(0) -> z(t) of this problem in the periodic case is not uniformly continuous in Besov spaces B(p,)r(s)(T) x B-p,r(s) (T) with s > max{3/2, 1 + 1/ p}, 1 <= p, r <= infinity by using the method of approximate solutions. In the non-periodic case, the nonuniform continuity of this solution map in Besov spaces B-2,r(s) (R) x B-2,r(s) (R) with s > 3/2, 2 <= r <= infinity is established. Finally, the Holder continuity of the solution map in Besov spaces is proved.
引用
收藏
页码:479 / 505
页数:27
相关论文
共 50 条
  • [1] On the initial value problem for the two-coupled Camassa–Holm system in Besov spaces
    Haiquan Wang
    Gezi Chong
    Monatshefte für Mathematik, 2020, 193 : 479 - 505
  • [2] The Cauchy problem for the generalized Camassa-Holm equation in Besov space
    Yan, Wei
    Li, Yongsheng
    Zhang, Yimin
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2014, 256 (08) : 2876 - 2901
  • [3] Well-posedness of the modified Camassa-Holm equation in Besov spaces
    Tang, Hao
    Liu, Zhengrong
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2015, 66 (04): : 1559 - 1580
  • [4] ON THE INITIAL VALUE PROBLEM FOR HIGHER DIMENSIONAL CAMASSA-HOLM EQUATIONS
    Yan, Kai
    Yin, Zhaoyang
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2015, 35 (03) : 1327 - 1358
  • [5] Non-uniform dependence on initial data for the Camassa-Holm equation in Besov spaces
    Li, Jinlu
    Yu, Yanghai
    Zhu, Weipeng
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2020, 269 (10) : 8686 - 8700
  • [6] A note on the initial value problem for a higher-order Camassa-Holm equation
    Wang, Haiquan
    Guo, Yu
    MATHEMATISCHE NACHRICHTEN, 2022, 295 (09) : 1783 - 1811
  • [7] The Cauchy problem for fractional Camassa-Holm equation in Besov space
    Fan, Lili
    Gao, Hongjun
    Wang, Junfang
    Yan, Wei
    NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2021, 61 (61)
  • [8] On the Cauchy problem for a weakly dissipative Camassa-Holm equation in critical Besov spaces
    Meng, Zhiying
    Yin, Zhaoyang
    APPLICABLE ANALYSIS, 2022, : 4432 - 4449
  • [9] On the periodic Cauchy problem for a coupled Camassa-Holm system with peakons
    Liu, Xingxing
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2016, 67 (01):
  • [10] Non-uniform dependence on initial data for the Camassa-Holm equation in Besov spaces: Revisited
    Li, Jinlu
    Yu, Yanghai
    Zhu, Weipeng
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2024, 390 : 426 - 450