Water Electrolysis for the Production of Hydrogen to Be Employed in the Ironmaking and Steelmaking Industry

被引:37
作者
Cavaliere, Pasquale Daniele [1 ]
Perrone, Angelo [1 ]
Silvello, Alessio [2 ]
机构
[1] Univ Salento, Dept Innovat Engn, Via Arnesano, I-73100 Lecce, Italy
[2] Univ Barcelona, Thermal Spray Ctr CPT, Barcelona 08028, Spain
关键词
water electrolysis; ironmaking; steelmaking; purification; desalinization; direct reduction; energy; renewables; high temperature; low temperature; ALKALINE; PERFORMANCE; SIMULATION; EFFICIENCY; SYSTEM;
D O I
10.3390/met11111816
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The way to decarbonization will be characterized by the huge production of hydrogen through sustainable routes. Thus, the basic production way is water electrolysis sustained by renewable energy sources allowing for obtaining "green hydrogen ". The present paper reviews the main available technologies for the water electrolysis finalized to the hydrogen production. We describe the fundamental of water electrolysis and the problems related to purification and/or desalinization of water before electrolysis. As a matter of fact, we describe the energy efficiency issues with particular attention to the potential application in the steel industry. The fundamental aspects related to the choice of high-temperature or low-temperature technologies are analyzed.
引用
收藏
页数:28
相关论文
共 30 条
[1]   A comparison of two hydrogen storages in a fossil-free direct reduced iron process [J].
Andersson, Joakim ;
Gronkvist, Stefan .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2021, 46 (56) :28657-28674
[2]   Recent development in electrocatalysts for hydrogen production through water electrolysis [J].
Anwar, Shams ;
Khan, Faisal ;
Zhang, Yahui ;
Djire, Abdoulaye .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2021, 46 (63) :32284-32317
[3]   A comprehensive review on PEM water electrolysis [J].
Carmo, Marcelo ;
Fritz, David L. ;
Merge, Juergen ;
Stolten, Detlef .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2013, 38 (12) :4901-4934
[4]  
Cavaliere P., 2019, CLEAN IRONMAKING STE, DOI [10.1007/978-3-030-21209-4, DOI 10.1007/978-3-030-21209-4]
[5]  
Cavaliere P., 2016, Ironmaking and Steelmaking Processes, DOI [10.1007/978-3-319-39529-6, DOI 10.1007/978-3-319-39529-6]
[6]  
Cavaliere P., 2019, CLEAN IR STEELM P, P419, DOI DOI 10.1007/978-3-030-21209-4_8
[7]  
Chevrier V., 2018, P AIS TECH IR STEEL, P725
[8]   Decoupled hydrogen and oxygen evolution by a two-step electrochemical-chemical cycle for efficient overall water splitting [J].
Dotan, Hen ;
Landman, Avigail ;
Sheehan, Stafford W. ;
Malviya, Kirtiman Deo ;
Shter, Gennady E. ;
Grave, Daniel A. ;
Arzi, Ziv ;
Yehudai, Nachshon ;
Halabi, Manar ;
Gal, Netta ;
Hadari, Noam ;
Cohen, Coral ;
Rothschild, Avner ;
Grader, Gideon S. .
NATURE ENERGY, 2019, 4 (09) :786-795
[9]   CFD simulation of two-phase gas-particle flow in the Midrex shaft furnace: The effect of twin gas injection system on the performance of the reactor [J].
Ghadi, Ariyan Zare ;
Valipour, Mohammad Sadegh ;
Biglari, Mojtaba .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2017, 42 (01) :103-118
[10]   High Temperature Co-Electrolysis as a Key Technology for CO2Emission Mitigation - A Model-Based Assessment of CDA and CCU [J].
Herz, Gregor ;
Mueller, Nils ;
Adam, Paul ;
Megel, Stefan ;
Reichelt, Erik ;
Jahn, Matthias .
CHEMIE INGENIEUR TECHNIK, 2020, 92 (08) :1044-1058