Effects of Interaural Pitch Matching and Auditory Image Centering on Binaural Sensitivity in Cochlear Implant Users

被引:1
作者
Kan, Alan [1 ]
Litovsky, Ruth Y. [1 ]
Goupell, Matthew J. [1 ,2 ]
机构
[1] Univ Wisconsin, Waisman Ctr, Madison, WI 53705 USA
[2] Univ Maryland, Dept Hearing & Speech Sci, College Pk, MD 20742 USA
基金
美国国家卫生研究院;
关键词
Bilateral cochlear implants; Binaural sensitivity; Interaural mismatch; PLACE-OF-STIMULATION; PSYCHOMETRIC FUNCTION; TIME; DISCRIMINATION; HEARING; LEVEL; LOCALIZATION; DIFFERENCE; FREQUENCY; POSITION;
D O I
暂无
中图分类号
R36 [病理学]; R76 [耳鼻咽喉科学];
学科分类号
100104 ; 100213 ;
摘要
Objectives: In bilateral cochlear implant users, electrodes mapped to the same frequency range in each ear may stimulate different places in each cochlea due to an insertion depth difference of electrode arrays. This interaural place of stimulation mismatch can lead to problems with auditory image fusion and sensitivity to binaural cues, which may explain the large localization errors seen in many patients. Previous work has shown that interaural place of stimulation mismatch can lead to off-centered auditory images being perceived even though interaural time and level differences (ITD and ILD, respectively) were zero. Large interaural mismatches reduced the ability to use ITDs for auditory image lateralization. In contrast, lateralization with ILDs was still possible but the mapping of ILDs to spatial locations was distorted. This study extends the previous work by systematically investigating the effect of interaural place of stimulation mismatch on ITD and ILD sensitivity directly and examining whether "centering" methods can be used to mitigate some of the negative effects of interaural place of stimulation mismatch. Design: Interaural place of stimulation mismatch was deliberately introduced for this study. Interaural pitch-matching techniques were used to identify a pitch-matched pair of electrodes across the ears approximately at the center of the array. Mismatched pairs were then created by maintaining one of the pitch-matched electrodes constant, and systematically varying the contralateral electrode by two, four, or eight electrode positions (corresponding to approximately 1.5, 3, and 6 mm of interaural place of excitation differences). The stimuli were 300 msec, constant amplitude pulse trains presented at 100 pulses per second. ITD and ILD just noticeable differences (JNDs) were measured using a method of constant stimuli with a two-interval, two-alternative forced choice task. The results were fit with a psychometric function to obtain the JNDs. In experiment I, ITD and ILD JNDs were measured as a function of the simulated place of stimulation mismatch. In experiment II, the auditory image of mismatched pair was centered by adjusting the stimulation level according to a lateralization task. ITD and ILD JNDs were then remeasured and compared with the results of experiment I. Results: ITD and ILD JNDs were best (lowest thresholds) for pairs of electrodes at or near the pitch-matched pair. Thresholds increased systematically with increasing amounts of interaural mismatch. Deliberate and careful centering of auditory images did not significantly improve ITD JNDs but did improve ILD JNDs at very large amounts of simulated mismatch. Conclusions: Interaural place of stimulation mismatch decreases sensitivity to binaural cues that are important for accurate sound localization. However, deliberate and careful centering of auditory images does not seem to significantly counteract the effects of mismatch. Hence, to obtain maximal sound localization benefits of bilateral implantation, clinical and surgical techniques are needed that take into account differences in electrode array insertion depths across the ears.
引用
收藏
页码:E62 / E68
页数:7
相关论文
共 31 条
  • [1] The use of interaural time and level difference cues by bilateral cochlear implant users
    Aronoff, Justin M.
    Yoon, Yang-soo
    Freed, Daniel J.
    Vermiglio, Andrew J.
    Pal, Ivan
    Soli, Sigfrid D.
    [J]. JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA, 2010, 127 (03) : EL87 - EL92
  • [2] Interaural time discrimination of envelopes carried on high-frequency tones as a function of level and interaural carrier mismatch
    Blanks, Deidra A.
    Buss, Emily
    Grose, John H.
    Fitzpatrick, Douglas C.
    Hall, Joseph W., III
    [J]. EAR AND HEARING, 2008, 29 (05) : 674 - 683
  • [3] THEORY OF BINAURAL INTERACTION BASED ON AUDITORY-NERVE DATA .2. DETECTION OF TONES IN NOISE
    COLBURN, HS
    [J]. JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA, 1977, 61 (02) : 525 - 533
  • [4] LATERAL POSITION AND INTERAURAL DISCRIMINATION
    DOMNITZ, RH
    COLBURN, HS
    [J]. JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA, 1977, 61 (06) : 1586 - 1598
  • [5] Perception of across-frequency interaural level differences
    Francart, Tom
    Wouters, Jan
    [J]. JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA, 2007, 122 (05) : 2826 - 2831
  • [6] Effect of mismatched place-of-stimulation on the salience of binaural cues in conditions that simulate bilateral cochlear-implant listening
    Goupell, Matthew J.
    Stoelb, Corey
    Kan, Alan
    Litovsky, Ruth Y.
    [J]. JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA, 2013, 133 (04) : 2272 - 2287
  • [7] Mapping procedures can produce non-centered auditory images in bilateral cochlear implantees
    Goupell, Matthew J.
    Kan, Alan
    Litovsky, Ruth Y.
    [J]. JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA, 2013, 133 (02) : EL101 - EL107
  • [8] Horizontal-plane localization of noise and speech signals by postlingually deafened adults fitted with bilateral cochlear implants
    Grantham, D. Wesley
    Ashmead, Daniel H.
    Ricketts, Todd A.
    Labadie, Robert F.
    Haynes, David S.
    [J]. EAR AND HEARING, 2007, 28 (04) : 524 - 541
  • [9] Gstoettner W, 1999, ACTA OTO-LARYNGOL, V119, P229
  • [10] DIFFERENCE THRESHOLDS FOR INTERAURAL DELAY
    HAFTER, ER
    DEMAIO, J
    [J]. JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA, 1975, 57 (01) : 181 - 187