Iron Metabolism in Pancreatic Beta-Cell Function and Dysfunction

被引:40
作者
Marku, Algerta [1 ]
Galli, Alessandra [1 ]
Marciani, Paola [1 ]
Dule, Nevia [1 ]
Perego, Carla [1 ]
Castagna, Michela [1 ]
机构
[1] Univ Milan, Dept Excellence Pharmacol & Biomol Sci, Via Trentacoste, I-22134 Milan, Italy
关键词
Iron metabolism; beta-cell function; reactive oxygen species; diabetes; TRANSFERRIN-BOUND IRON; ISLET AMYLOID POLYPEPTIDE; DRUG TARGET MITONEET; OXIDATIVE STRESS; MITOCHONDRIAL DYSFUNCTION; IDIOPATHIC HEMOCHROMATOSIS; GENETIC HEMOCHROMATOSIS; SIDEROBLASTIC ANEMIA; INSULIN-SECRETION; DIABETES-MELLITUS;
D O I
10.3390/cells10112841
中图分类号
Q2 [细胞生物学];
学科分类号
071009 ; 090102 ;
摘要
Iron is an essential element involved in a variety of physiological functions. In the pancreatic beta-cells, being part of Fe-S cluster proteins, it is necessary for the correct insulin synthesis and processing. In the mitochondria, as a component of the respiratory chain, it allows the production of ATP and reactive oxygen species (ROS) that trigger beta-cell depolarization and potentiate the calcium-dependent insulin release. Iron cellular content must be finely tuned to ensure the normal supply but also to prevent overloading. Indeed, due to the high reactivity with oxygen and the formation of free radicals, iron excess may cause oxidative damage of cells that are extremely vulnerable to this condition because the normal elevated ROS production and the paucity in antioxidant enzyme activities. The aim of the present review is to provide insights into the mechanisms responsible for iron homeostasis in beta-cells, describing how alteration of these processes has been related to beta-cell damage and failure. Defects in iron-storing or -chaperoning proteins have been detected in diabetic conditions; therefore, the control of iron metabolism in these cells deserves further investigation as a promising target for the development of new disease treatments.
引用
收藏
页数:17
相关论文
共 158 条
[61]   Human hephaestin expression is not limited to enterocytes of the gastrointestinal tract but is also found in the antrum, the enteric nervous system, and pancreatic β-cells [J].
Hudson, David M. ;
Curtis, Susan B. ;
Smith, Valerie C. ;
Griffiths, Tanya A. M. ;
Wong, Ann Y. K. ;
Scudamore, Charles H. ;
Buchan, Alison M. J. ;
MacGillivray, Ross T. A. .
AMERICAN JOURNAL OF PHYSIOLOGY-GASTROINTESTINAL AND LIVER PHYSIOLOGY, 2010, 298 (03) :G425-G432
[62]   Exenatide induces frataxin expression and improves mitochondrial function in Friedreich ataxia [J].
Igoillo-Esteve, Mariana ;
Oliveira, Ana F. ;
Cosentino, Cristina ;
Fantuzzi, Federica ;
Demarez, Celine ;
Toivonen, Sanna ;
Hu, Amelie ;
Chintawar, Satyan ;
Lopes, Miguel ;
Pachera, Nathalie ;
Cai, Ying ;
Abdulkarim, Baroj ;
Rai, Myriam ;
Marselli, Lorella ;
Marchetti, Piero ;
Tariq, Mohammad ;
Jonas, Jean-Christophe ;
Boscolo, Marina ;
Pandolfo, Massimo ;
Eizirik, Decio L. ;
Cnop, Miriam .
JCI INSIGHT, 2020, 5 (02)
[63]   MicroRNAs modulate core-clock gene expression in pancreatic islets during early postnatal life in rats [J].
Jacovetti, Cecile ;
Rodriguez-Trejo, Adriana ;
Guay, Claudiane ;
Sobel, Jonathan ;
Gattesco, Sonia ;
Petrenko, Volodymyr ;
Saini, Camille ;
Dibner, Charna ;
Regazzi, Romano .
DIABETOLOGIA, 2017, 60 (10) :2011-2020
[64]   The Pancreatic β-Cell: The Perfect Redox System [J].
Jezek, Petr ;
Holendova, Blanka ;
Jaburek, Martin ;
Tauber, Jan ;
Dlaskova, Andrea ;
Plecita-Hlavata, Lydie .
ANTIOXIDANTS, 2021, 10 (02) :1-64
[65]   Iron-mediated inhibition of mitochondrial manganese uptake mediates mitochondrial dysfunction in a mouse model of hemochromatosis [J].
Joitihan, Hani A. ;
Cobine, Paul A. ;
Cooksey, Robert C. ;
Hoagland, Emily A. ;
Boudina, Sihem ;
Abel, E. Dale ;
Winge, Dennis R. ;
McClain, Donald A. .
MOLECULAR MEDICINE, 2008, 14 (3-4) :98-108
[66]   EVIDENCE OF COSECRETION OF ISLET AMYLOID POLYPEPTIDE AND INSULIN BY BETA-CELLS [J].
KAHN, SE ;
DALESSIO, DA ;
SCHWARTZ, MW ;
FUJIMOTO, WY ;
ENSINCK, JW ;
TABORSKY, GJ ;
PORTE, D .
DIABETES, 1990, 39 (05) :634-638
[67]   A specialized pathway for erythroid iron delivery through lysosomal trafficking of transferrin receptor 2 [J].
Khalil, Shadi ;
Holy, Maja ;
Grado, Stephen ;
Fleming, Robert ;
Kurita, Ryo ;
Nakamura, Yukio ;
Goldfarb, Adam .
BLOOD ADVANCES, 2017, 1 (15) :1181-1194
[68]   Pancreatic β-cells express hepcidin, an iron-uptake regulatory peptide [J].
Kulaksiz, Hasan ;
Fein, Evelyn ;
Redecker, Peter ;
Stremmel, Wolfgang ;
Adler, Guido ;
Cetin, Yalcin .
JOURNAL OF ENDOCRINOLOGY, 2008, 197 (02) :241-249
[69]   Common presence of non-transferrin-bound iron among patients with type 2 diabetes [J].
Lee, DH ;
Liu, DY ;
Jacobs, DR ;
Shin, HR ;
Song, K ;
Lee, IK ;
Kim, B ;
Hider, RC .
DIABETES CARE, 2006, 29 (05) :1090-1095
[70]   Each Member of the Poly-r(C)-binding Protein 1 (PCBP) Family Exhibits Iron Chaperone Activity toward Ferritin [J].
Leidgens, Sebastien ;
Bullough, Kimberly Z. ;
Shi, Haifeng ;
Li, Fengmin ;
Shakoury-Elizeh, Minoo ;
Yabe, Toshiki ;
Subramanian, Poorna ;
Hsu, Emory ;
Natarajan, Navin ;
Nandal, Anjali ;
Stemmler, Timothy L. ;
Philpott, Caroline C. .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2013, 288 (24) :17791-17802