3D-QSAR, Docking, and Molecular Dynamics Simulations Studies on Quinazoline Derivatives as PAK4 Inhibitors

被引:2
|
作者
Chen, Xiao-Zhong [1 ]
Dai, Chen [1 ]
Shen, Yan [1 ]
Wang, Juan [1 ]
Hu, Yong [1 ]
Wang, Yuan-Qiang [1 ]
Lin, Zhi-Hua [1 ]
机构
[1] Chongqing Univ Technol, Dept Pharm & Bioengn, ZHL Box 0000-000, Chongqing, Peoples R China
基金
中国国家自然科学基金;
关键词
p21-Activated kinase; CoMFA; CoMSIA; 3D-QSAR; molecular docking; molecular dynamics simulations; MM-PBSA; COMSIA; POTENT; COMFA; BINDING; PREDICT; QSAR;
D O I
10.2174/1570180818666210602155310
中图分类号
R914 [药物化学];
学科分类号
100701 ;
摘要
Background: The p21-activated kinases 4 (PAK4) refer to a promising target for cancer treatment. Currently, a wide range of PAK4 inhibitors has been reported. Objective: The objective of this study is to study the structural requirements of quinoline derivatives as PAK4 inhibitors and to design novel PAK4 inhibitors. Method: In the present study, a set of quinazoline PAK4 inhibitors underwent CoMFA, CoMSIA, molecular docking, as well as molecular dynamics simulations. Results: The built CoMFA (q(2)=0.595, r(2)=0.986, r(pred)(2) =0.689) and CoMSIA (q(2)=0.762, r(2)=0.984, r(pred)(2)=0.822 ) models exhibited high robustness and prominent predicting ability. As revealed from the results of molecular docking and molecular dynamics simulations, hydrogen bond and hydrophobic interactions primarily impact the affinity of PAK4 inhibitors, and Leu398 acts as an amino acid that leads to significant stabilization of the mentioned inhibitors. Moreover, the present study developed five novel molecules exhibiting high biological activity predicted and satisfactory ADME properties. Conclusion: The structural basis of PAK4 with respect to the activities of its inhibitors was revealed, which may be conducive to designing novel PAK4 inhibitors.
引用
收藏
页码:1025 / 1038
页数:14
相关论文
共 50 条
  • [41] 3D-QSAR, Molecular Docking and Molecular Dynamics Studies of 2,4-Diarylaminopyrimidine Analogues (DAAP Analogues) as Potent ALK Inhibitors
    Wu, Fulong
    Lv, Qianqian
    Wang, Zhonghua
    Li, Dandan
    Peng, Peng
    Yin, Yan
    Cui, Siheng
    Wu, Fanhong
    LETTERS IN DRUG DESIGN & DISCOVERY, 2017, 14 (03) : 270 - 286
  • [42] Structural insights of Staphylococcus aureus FtsZ inhibitors through molecular docking, 3D-QSAR and molecular dynamics simulations
    Ballu, Srilata
    Itteboina, Ramesh
    Sivan, Sree Kanth
    Manga, Vijjulatha
    JOURNAL OF RECEPTORS AND SIGNAL TRANSDUCTION, 2018, 38 (01) : 61 - 70
  • [43] Molecular modeling studies of Rho kinase inhibitors using molecular docking and 3D-QSAR analysis
    Qin, Jin
    Lei, Beilei
    Xi, Lili
    Liu, Huanxiang
    Yao, Xiaojun
    EUROPEAN JOURNAL OF MEDICINAL CHEMISTRY, 2010, 45 (07) : 2768 - 2776
  • [44] Studies on the antibacterial activities and molecular mechanism of GyrB inhibitors by 3D-QSAR, molecular docking and molecular dynamics simulation
    Wang, Fangfang
    Yang, Wei
    Zhou, Bo
    ARABIAN JOURNAL OF CHEMISTRY, 2022, 15 (06)
  • [45] 3D-QSAR and molecular docking studies of aminothiazole derivatives as Lim kinase 1 inhibitors
    Hou, Jing-Xuan
    Gu, Qing-Shan
    Shi, Mei-Qi
    Gao, Hui
    Zheng, Lu
    Wu, Qing-Kun
    JOURNAL OF THE SERBIAN CHEMICAL SOCIETY, 2022, 87 (12) : 1381 - 1393
  • [46] A Combination of 3D-QSAR, Molecular Docking and Molecular Dynamics Simulation Studies of Benzimidazole-Quinolinone Derivatives as iNOS Inhibitors
    Zhang, Hao
    Zan, Jinhang
    Yu, Guangyun
    Jiang, Ming
    Liu, Peixun
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2012, 13 (09) : 11210 - 11227
  • [47] Molecular modelling of quinoline derivatives as telomerase inhibitors through 3D-QSAR, molecular dynamics simulation, and molecular docking techniques
    Vishwakarma, Keerti
    Bhatt, Hardik
    JOURNAL OF MOLECULAR MODELING, 2021, 27 (02)
  • [48] Molecular modelling of quinoline derivatives as telomerase inhibitors through 3D-QSAR, molecular dynamics simulation, and molecular docking techniques
    Keerti Vishwakarma
    Hardik Bhatt
    Journal of Molecular Modeling, 2021, 27
  • [49] Molecular Docking and 3D-QSAR Research of Quinoline Derivatives as Estrogen Receptor β Ligands
    Li Jian
    Mei Hu
    Long Yun
    Liu Li
    Yang Li
    ACTA CHIMICA SINICA, 2009, 67 (21) : 2457 - 2462
  • [50] 3D-QSAR and docking studies on pyridopyrazinones as BRAF inhibitors
    Yong Ai
    Shao-Teng Wang
    Chu Tang
    Ping-Hua Sun
    Fa-Jun Song
    Medicinal Chemistry Research, 2011, 20 : 1298 - 1317