A Generalization of Alternating Sign Matrices

被引:5
作者
Brualdi, Richard A. [1 ]
Kim, Hwa K. [2 ]
机构
[1] Univ Wisconsin, Dept Math, Madison, WI 53706 USA
[2] Sangmyung Univ, Dept Math Educ, Seoul 110743, South Korea
关键词
alternating sign matrix (ASM); 05B20; 05C22; 05C50; 15B35; 15B36; ENUMERATION;
D O I
10.1002/jcd.21397
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In alternating sign matrices, the first and last nonzero entry in each row and column is specified to be +1. Such matrices always exist. We investigate a generalization by specifying independently the sign of the first and last nonzero entry in each row and column to be either a +1 or a -1. We determine necessary and sufficient conditions for such matrices to exist whose proof contains an algorithm for their construction.
引用
收藏
页码:204 / 215
页数:12
相关论文
共 7 条
[1]   New enumeration formulas for alternating sign matrices and square ice partition functions [J].
Ayyer, Arvind ;
Romik, Dan .
ADVANCES IN MATHEMATICS, 2013, 235 :161-186
[2]   Multiply-refined enumeration of alternating sign matrices [J].
Behrend, Roger E. .
ADVANCES IN MATHEMATICS, 2013, 245 :439-499
[3]  
Bressoud D M., 1999, Proofs and Confirmations: The Story of the Alternating Sign Matrix Conjecture
[4]  
Kuperberg G., 1996, INT MATH RES NOTES, V1996, P139
[5]   ALTERNATING SIGN MATRICES AND DESCENDING PLANE PARTITIONS [J].
MILLS, WH ;
ROBBINS, DP ;
RUMSEY, H .
JOURNAL OF COMBINATORIAL THEORY SERIES A, 1983, 34 (03) :340-359
[6]   THE STORY OF 1, 2, 7, 42, 429, 7436 [J].
ROBBINS, DP .
MATHEMATICAL INTELLIGENCER, 1991, 13 (02) :12-19
[7]  
ZEILBERGER D., 1996, Electron. J. Combin., V3, DOI [10.37236/1271, DOI 10.37236/1271]