Rogers dilogarithms of higher degree and generalized cluster algebras

被引:2
作者
Nakanishi, Tomoki [1 ]
机构
[1] Nagoya Univ, Grad Sch Math, Chikusa Ku, Nagoya, Aichi 4648602, Japan
关键词
dilogarithm; quantum dilogarithm; cluster algebra; QUANTUM DILOGARITHM; IDENTITIES;
D O I
10.2969/jmsj/75767576
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In connection with generalized cluster algebras we introduce a certain generalization of the celebrated Rogers dilogarithm, which we call the Rogers dilogarithms of higher degree. We show that there is an identity of these generalized Rogers dilogarithms associated with any period of seeds of a generalized cluster algebra.
引用
收藏
页码:1269 / 1304
页数:36
相关论文
共 50 条
[41]   A Combinatorial Characterization of Cluster Algebras: On the Number of Arrows of Cluster Quivers [J].
Qiuning Du ;
Fang Li ;
Jie Pan .
Annals of Combinatorics, 2022, 26 :1077-1120
[42]   Cluster modular groups of affine and doubly extended cluster algebras [J].
Kaufman, Dani ;
Greenberg, Zachary .
MATHEMATISCHE ZEITSCHRIFT, 2025, 310 (02)
[43]   A Combinatorial Characterization of Cluster Algebras: On the Number of Arrows of Cluster Quivers [J].
Du, Qiuning ;
Li, Fang ;
Pan, Jie .
ANNALS OF COMBINATORICS, 2022, 26 (04) :1077-1120
[44]   Tubular cluster algebras I: categorification [J].
Michael Barot ;
Christof Geiss .
Mathematische Zeitschrift, 2012, 271 :1091-1115
[45]   Quasi-homomorphisms of cluster algebras [J].
Fraser, Chris .
ADVANCES IN APPLIED MATHEMATICS, 2016, 81 :40-77
[46]   Skein and cluster algebras of marked surfaces [J].
Muller, Greg .
QUANTUM TOPOLOGY, 2016, 7 (03) :435-503
[47]   Denominators in cluster algebras of affine type [J].
Buan, Aslak Bakke ;
Marsh, Bethany Rose .
JOURNAL OF ALGEBRA, 2010, 323 (08) :2083-2102
[48]   AUTOMORPHISMS OF CLUSTER ALGEBRAS OF RANK 2 [J].
Blanc, Jeremy ;
Dolgachev, Igor .
TRANSFORMATION GROUPS, 2015, 20 (01) :1-20
[49]   Quivers with Relations and Cluster Tilted Algebras [J].
Philippe Caldero ;
Frédéric Chapoton ;
Ralf Schiffler .
Algebras and Representation Theory, 2006, 9 :359-376
[50]   Bases for cluster algebras from orbifolds [J].
Felikson, Anna ;
Tumarkin, Pavel .
ADVANCES IN MATHEMATICS, 2017, 318 :191-232