Rogers dilogarithms of higher degree and generalized cluster algebras

被引:2
|
作者
Nakanishi, Tomoki [1 ]
机构
[1] Nagoya Univ, Grad Sch Math, Chikusa Ku, Nagoya, Aichi 4648602, Japan
关键词
dilogarithm; quantum dilogarithm; cluster algebra; QUANTUM DILOGARITHM; IDENTITIES;
D O I
10.2969/jmsj/75767576
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In connection with generalized cluster algebras we introduce a certain generalization of the celebrated Rogers dilogarithm, which we call the Rogers dilogarithms of higher degree. We show that there is an identity of these generalized Rogers dilogarithms associated with any period of seeds of a generalized cluster algebra.
引用
收藏
页码:1269 / 1304
页数:36
相关论文
共 50 条
  • [1] Quantum generalized cluster algebras and quantum dilogarithms of higher degrees
    T. Nakanishi
    Theoretical and Mathematical Physics, 2015, 185 : 1759 - 1768
  • [2] Quantum generalized cluster algebras and quantum dilogarithms of higher degrees
    Nakanishi, T.
    THEORETICAL AND MATHEMATICAL PHYSICS, 2015, 185 (03) : 1759 - 1768
  • [3] STRUCTURE OF SEEDS IN GENERALIZED CLUSTER ALGEBRAS
    Nakanishi, Tomoki
    PACIFIC JOURNAL OF MATHEMATICS, 2015, 277 (01) : 201 - 217
  • [4] On the Generalized Cluster Algebras of Geometric Type
    Bai, Liqian
    Chen, Xueqing
    Ding, Ming
    Xu, Fan
    SYMMETRY INTEGRABILITY AND GEOMETRY-METHODS AND APPLICATIONS, 2020, 16
  • [5] A Quantum Analog of Generalized Cluster Algebras
    Bai, Liqian
    Chen, Xueqing
    Ding, Ming
    Xu, Fan
    ALGEBRAS AND REPRESENTATION THEORY, 2018, 21 (06) : 1203 - 1217
  • [6] Simple connections between generalized hypergeometric series and dilogarithms
    SanchisLozano, MA
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 1997, 85 (02) : 325 - 331
  • [7] Tropicalization method in cluster algebras
    Nakanishi, Tomoki
    TROPICAL GEOMETRY AND INTEGRABLE SYSTEMS, 2012, 580 : 95 - 115
  • [8] Some conjectures on generalized cluster algebras via the cluster formula and D-matrix pattern
    Cao, Peigen
    Li, Fang
    JOURNAL OF ALGEBRA, 2018, 493 : 57 - 78
  • [9] Cluster algebras and derived categories
    Keller, Bernhard
    DERIVED CATEGORIES IN ALGEBRAIC GEOMETRY - TOKYO 2011, 2012, : 123 - 183
  • [10] CLUSTER ALGEBRAS AND CLUSTER CATEGORIES
    Keller, B.
    BULLETIN OF THE IRANIAN MATHEMATICAL SOCIETY, 2011, 37 (02) : 187 - 234