Evaluation of the thermal conductivity coefficient of the strained concentric multi-walled carbon and boron-nitride nanotubes: A molecular dynamics investigation

被引:22
作者
Ghaderi, Hossein [1 ]
Ghasemi, Ali [2 ]
Rouhi, Saeed [1 ]
Mahdavi, Eqlima [3 ]
机构
[1] Islamic Azad Univ, Langarud Branch, Dept Mech Engn, Langarud, Iran
[2] Islamic Azad Univ, North Tehran Branch, Fac Engn, Dept Mech Engn, Tehran, Iran
[3] Iran Univ Sci & Technol IUST, Sch Mech Engn, Tehran 1684613114, Iran
关键词
Molecular dynamics simulation; Thermal conductivity coefficient; Concentric multi-walled carbon and boron-nitride nanotubes; Strain; Temperature; TEMPERATURE;
D O I
10.1016/j.physe.2021.114830
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
In this paper, the molecular dynamics simulations are used to compute the thermal conductivity coefficient of the strained concentric multi walled carbon and boron-nitride nanotubes. The influences of different parameters, such as nanotube diameter, length, strain, temperature and number of walls on the thermal behavior are evaluated. It is shown that the length and diameter have an increasing effect on the thermal conductivity coefficient of the concentric multi walled carbon and boron-nitride nanotubes. Similarly, the thermal conductivity of the strained nanotubes is larger than the unstrained ones. However, increasing the temperature results in decreasing the thermal conductivity coefficient of the considered nanotubes. The influence of the temperature on the thermal conductivity coefficient of the zigzag nanotube is less significant than the armchair ones.
引用
收藏
页数:6
相关论文
共 32 条
  • [1] Electro-thermo-mechanical buckling of DWBNNTs embedded in bundle of CNTs using nonlocal piezoelasticity cylindrical shell theory
    Arani, A. Ghorbanpour
    Amir, S.
    Shajari, A. R.
    Mozdianfard, M. R.
    [J]. COMPOSITES PART B-ENGINEERING, 2012, 43 (02) : 195 - 203
  • [2] Coaxial Boron-Nitride/Carbon Nanotubes as a Potential Replacement for Double-Walled Carbon Nanotubes for High Strain Applications
    Chandra, Anirban
    Krishnan, N. M. Anoop
    Patra, Puneet Kumar
    Ghosh, Debraj
    [J]. JOURNAL OF NANOSCIENCE AND NANOTECHNOLOGY, 2017, 17 (08) : 5252 - 5260
  • [3] Isotope effect on the thermal conductivity of boron nitride nanotubes
    Chang, C. W.
    Fennimore, A. M.
    Afanasiev, A.
    Okawa, D.
    Ikuno, T.
    Garcia, H.
    Li, Deyu
    Majumdar, A.
    Zettl, A.
    [J]. PHYSICAL REVIEW LETTERS, 2006, 97 (08)
  • [4] Boron nitride nanotubes: Pronounced resistance to oxidation
    Chen, Y
    Zou, J
    Campbell, SJ
    Le Caer, G
    [J]. APPLIED PHYSICS LETTERS, 2004, 84 (13) : 2430 - 2432
  • [5] Improving methane gas sensing properties of multi-walled carbon nanotubes by vanadium oxide filling
    Chimowa, George
    Tshabalala, Zamaswazi P.
    Akande, Amos A.
    Bepete, George
    Mwakikunga, Bonex
    Ray, Suprakas S.
    Benecha, Evans M.
    [J]. SENSORS AND ACTUATORS B-CHEMICAL, 2017, 247 : 11 - 18
  • [6] BORON-NITRIDE NANOTUBES
    CHOPRA, NG
    LUYKEN, RJ
    CHERREY, K
    CRESPI, VH
    COHEN, ML
    LOUIE, SG
    ZETTL, A
    [J]. SCIENCE, 1995, 269 (5226) : 966 - 967
  • [7] CNT-MOSFET modeling based on artificial neural network: Application to simulation of nanoscale circuits
    Hayati, Mohsen
    Rezaei, Abbas
    Seifi, Majid
    [J]. SOLID-STATE ELECTRONICS, 2010, 54 (01) : 52 - 57
  • [8] Mechanical and thermal properties of the coaxial carbon nanotube@boron nitride nanotube composite
    He, Tiantian
    Li, Ting
    Huang, Zhengxing
    Tang, Zhenan
    Guan, Xiangyu
    [J]. PHYSICA E-LOW-DIMENSIONAL SYSTEMS & NANOSTRUCTURES, 2019, 107 : 182 - 186
  • [9] Small molecule delivery using carbon nano-test-tubes
    Ittisanronnachai, Somlak
    Orikasa, Hironori
    Inokuma, Nobuhiro
    Uozu, Yoshihiro
    Kyotani, Takashi
    [J]. CARBON, 2008, 46 (10) : 1361 - 1363
  • [10] Hydrogen adsorption on boron nitride nanotubes: A path to room-temperature hydrogen storage
    Jhi, SH
    Kwon, YK
    [J]. PHYSICAL REVIEW B, 2004, 69 (24) : 245407 - 1