Quantum entanglement, unitary braid representation and Temperley-Lieb algebra

被引:11
作者
Ho, C-L [1 ,2 ,3 ]
Solomon, A. I. [4 ,5 ]
Oh, C-H [1 ,2 ]
机构
[1] Natl Univ Singapore, Dept Phys, Singapore 117543, Singapore
[2] Natl Univ Singapore, Ctr Quantum Technol, Singapore 117543, Singapore
[3] Tamkang Univ, Dept Phys, Tamsui 251, Taiwan
[4] Open Univ, Dept Phys & Astron, Milton Keynes MK7 6AA, Bucks, England
[5] Univ Paris 06, LPTMC, F-75252 Paris 05, France
关键词
COMPUTATION; UNIVERSAL; ANYONS; MODEL;
D O I
10.1209/0295-5075/92/30002
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Important developments in fault-tolerant quantum computation using the braiding of anyons have placed the theory of braid groups at the very foundation of topological quantum computing. Furthermore, the realization by Kauffman and Lomonaco that a specific braiding operator from the solution of the Yang-Baxter equation, namely the Bell matrix, is universal implies that in principle all quantum gates can be constructed from braiding operators together with single qubit gates. In this paper we present a new class of braiding operators from the Temperley-Lieb algebra that generalizes the Bell matrix to multi-qubit systems, thus unifying the Hadamard and Bell matrices within the same framework. Unlike previous braiding operators, these new operators generate directly, from separable basis states, important entangled states such as the generalized Greenberger-Horne-Zeilinger states, cluster-like states, and other states with varying degrees of entanglement. Copyright (C) EPLA, 2010
引用
收藏
页数:5
相关论文
共 19 条
[1]   Higher dimensional unitary braid matrices: Construction, associated structures, and entanglements [J].
Abdesselam, B. ;
Chakrabarti, A. ;
Dobrev, V. K. ;
Mihov, S. G. .
JOURNAL OF MATHEMATICAL PHYSICS, 2007, 48 (05)
[2]  
[Anonymous], ARXIVQUANTPH0511096
[3]   Persistent entanglement in arrays of interacting particles [J].
Briegel, HJ ;
Raussendorf, R .
PHYSICAL REVIEW LETTERS, 2001, 86 (05) :910-913
[4]   Braiding transformation, entanglement swapping, and Berry phase in entanglement space [J].
Chen, Jing-Ling ;
Xue, Kang ;
Ge, Mo-Lin .
PHYSICAL REVIEW A, 2007, 76 (04)
[5]   A modular functor which is universal for quantum computation [J].
Freedman, MH ;
Larsen, M ;
Wang, ZH .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2002, 227 (03) :605-622
[6]  
GREENBERGER DM, 1989, FUND THEOR, V37, P69
[7]   A POLYNOMIAL INVARIANT FOR KNOTS VIA VONNEUMANN-ALGEBRAS [J].
JONES, VFR .
BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1985, 12 (01) :103-111
[8]   Braiding operators are universal quantum gates [J].
Kauffman, LH ;
Lomonaco, SJ .
NEW JOURNAL OF PHYSICS, 2004, 6 :1-40
[9]  
KAUFFMAN LH, 2007, P SPIE, V6573, P43004
[10]   q-deformed spin networks, knot polynomials and anyonic topological quantum computation [J].
Kauffman, Louis H. ;
Lomonaco, Samuel J., Jr. .
JOURNAL OF KNOT THEORY AND ITS RAMIFICATIONS, 2007, 16 (03) :267-332