The current issues and future perspective of artificial intelligence for developing new treatment strategy in non-small cell lung cancer: harmonization of molecular cancer biology and artificial intelligence

被引:26
作者
Tanaka, Ichidai [1 ]
Furukawa, Taiki [2 ]
Morise, Masahiro [1 ]
机构
[1] Nagoya Univ, Grad Sch Med, Dept Resp Med, Showa Ku, 65 Tsuruma Cho, Nagoya, Aichi 4668550, Japan
[2] Nagoya Univ, Ctr Healthcare Informat Technol C HiT, Nagoya, Aichi, Japan
基金
日本学术振兴会;
关键词
Artificial intelligence; NSCLC; SURFACTANT PROTEIN-B; CHECKPOINT BLOCKADE; KINASE INHIBITOR; OPEN-LABEL; TUMOR; ALK; CHEMOTHERAPY; CRIZOTINIB; GENE; CLASSIFICATION;
D O I
10.1186/s12935-021-02165-7
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
Comprehensive analysis of omics data, such as genome, transcriptome, proteome, metabolome, and interactome, is a crucial technique for elucidating the complex mechanism of cancer onset and progression. Recently, a variety of new findings have been reported based on multi-omics analysis in combination with various clinical information. However, integrated analysis of multi-omics data is extremely labor intensive, making the development of new analysis technology indispensable. Artificial intelligence (AI), which has been under development in recent years, is quickly becoming an effective approach to reduce the labor involved in analyzing large amounts of complex data and to obtain valuable information that is often overlooked in manual analysis and experiments. The use of AI, such as machine learning approaches and deep learning systems, allows for the efficient analysis of massive omics data combined with accurate clinical information and can lead to comprehensive predictive models that will be desirable for further developing individual treatment strategies of immunotherapy and molecular target therapy. Here, we aim to review the potential of AI in the integrated analysis of omics data and clinical information with a special focus on recent advances in the discovery of new biomarkers and the future direction of personalized medicine in non-small lung cancer.
引用
收藏
页数:14
相关论文
共 100 条
[91]  
Solomon BJ, 2014, NEW ENGL J MED, V371, P2167, DOI [10.1056/NEJMoa1408440, 10.1056/NEJMx150034]
[92]   Circulating Pro-Surfactant Protein B as a Risk Biomarker for Lung Cancer [J].
Taguchi, Ayumu ;
Hanash, Samir ;
Rundle, Andrew ;
McKeague, Ian W. ;
Tang, Deliang ;
Darakjy, Salima ;
Gaziano, J. Michael ;
Sesso, Howard D. ;
Perera, Frederica .
CANCER EPIDEMIOLOGY BIOMARKERS & PREVENTION, 2013, 22 (10) :1756-1761
[93]   Lung Cancer Signatures in Plasma Based on Proteome Profiling of Mouse Tumor Models [J].
Taguchi, Ayumu ;
Politi, Katerina ;
Pitteri, Sharon J. ;
Lockwood, William W. ;
Faca, Vitor M. ;
Kelly-Spratt, Karen ;
Wong, Chee-Hong ;
Zhang, Qing ;
Chin, Alice ;
Park, Kwon-Sik ;
Goodman, Gary ;
Gazdar, Adi F. ;
Sage, Julien ;
Dinulescu, Daniela M. ;
Kucherlapati, Raju ;
DePinho, Ronald A. ;
Kemp, Christopher J. ;
Varmus, Harold E. ;
Hanash, Samir M. .
CANCER CELL, 2011, 20 (03) :289-299
[94]   Potential Benefits of Bevacizumab Combined With Platinum-Based Chemotherapy in Advanced Non-Small-Cell Lung Cancer Patients With EGFR Mutation [J].
Tanaka, Ichidai ;
Morise, Masahiro ;
Miyazawa, Ayako ;
Kodama, Yuta ;
Tamiya, Yutaro ;
Gen, Soei ;
Matsui, Akira ;
Hase, Tetsunari ;
Hashimoto, Naozumi ;
Sato, Mitsuo ;
Hasegawa, Yoshinori .
CLINICAL LUNG CANCER, 2020, 21 (03) :273-+
[95]   A multi-layer omics approach to cancer [J].
Waldron, Denise .
NATURE REVIEWS GENETICS, 2016, 17 (08) :437-437
[96]   Accuracy and Efficiency of Deep-Learning-Based Automation of Dual Stain Cytology in Cervical Cancer Screening [J].
Wentzensen, Nicolas ;
Lahrmann, Bernd ;
Clarke, Megan A. ;
Kinney, Walter ;
Tokugawa, Diane ;
Poitras, Nancy ;
Locke, Alex ;
Bartels, Liam ;
Krauthoff, Alexandra ;
Walker, Joan ;
Zuna, Rosemary ;
Grewal, Kiranjit K. ;
Goldhoff, Patricia E. ;
Kingery, Julie D. ;
Castle, Philip E. ;
Schiffman, Mark ;
Lorey, Thomas S. ;
Grabe, Niels .
JNCI-JOURNAL OF THE NATIONAL CANCER INSTITUTE, 2021, 113 (01) :72-79
[97]   Machine learning reveals a PD-L1-independent prediction of response to immunotherapy of non-small cell lung cancer by gene expression context [J].
Wiesweg, Marcel ;
Mairinger, Fabian ;
Reis, Henning ;
Goetz, Moritz ;
Kollmeier, Jens ;
Misch, Daniel ;
Stephan-Falkenau, Susann ;
Mairinger, Thomas ;
Walter, Robert F. H. ;
Hager, Thomas ;
Metzenmacher, Martin ;
Eberhardt, Wilfried E. E. ;
Zaun, Gregor ;
Koester, Johannes ;
Stuschke, Martin ;
Aigner, Clemens ;
Darwiche, Kaid ;
Schmid, Kurt W. ;
Rahmann, Sven ;
Schuler, Martin .
EUROPEAN JOURNAL OF CANCER, 2020, 140 :76-85
[98]   Automated acquisition of explainable knowledge from unannotated histopathology images [J].
Yamamoto, Yoichiro ;
Tsuzuki, Toyonori ;
Akatsuka, Jun ;
Ueki, Masao ;
Morikawa, Hiromu ;
Numata, Yasushi ;
Takahara, Taishi ;
Tsuyuki, Takuji ;
Tsutsumi, Kotaro ;
Nakazawa, Ryuto ;
Shimizu, Akira ;
Maeda, Ichiro ;
Tsuchiya, Shinichi ;
Kanno, Hiroyuki ;
Kondo, Yukihiro ;
Fukumoto, Manabu ;
Tamiya, Gen ;
Ueda, Naonori ;
Kimura, Go .
NATURE COMMUNICATIONS, 2019, 10 (1)
[99]   Pathologist-level interpretable whole-slide cancer diagnosis with deep learning [J].
Zhang, Zizhao ;
Chen, Pingjun ;
McGough, Mason ;
Xing, Fuyong ;
Wang, Chunbao ;
Bui, Marilyn ;
Xie, Yuanpu ;
Sapkota, Manish ;
Cui, Lei ;
Dhillon, Jasreman ;
Ahmad, Nazeel ;
Khalil, Farah K. ;
Dickinson, Shohreh I. ;
Shi, Xiaoshuang ;
Liu, Fujun ;
Su, Hai ;
Cai, Jinzheng ;
Yang, Lin .
NATURE MACHINE INTELLIGENCE, 2019, 1 (05) :236-+
[100]   Alectinib versus crizotinib in untreated Asian patients with anaplastic lymphoma kinase-positive non-small-cell lung cancer (ALESIA): a randomised phase 3 study [J].
Zhou, Caicun ;
Kim, Sang-We ;
Reungwetwattana, Thanyanan ;
Zhou, Jianying ;
Zhang, Yiping ;
He, Jianxing ;
Yang, Jin-Ji ;
Cheng, Ying ;
Lee, Se-Hoon ;
Bu, Lilian ;
Xu, Tingting ;
Yang, Li ;
Wang, Chao ;
Liu, Ting ;
Morcos, Peter N. ;
Lu, You ;
Zhang, Li .
LANCET RESPIRATORY MEDICINE, 2019, 7 (05) :437-446