Dynamic Anchor Selection for Improving Object Localization

被引:0
作者
Shyam, Pranjay [1 ]
Yoon, Kuk-Jin [1 ]
Kim, Kyung-Soo [1 ]
机构
[1] Korea Adv Inst Sci & Technol, Dept Mech Engn, Daejeon, South Korea
来源
2020 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION (ICRA) | 2020年
关键词
D O I
10.1109/icra40945.2020.9197076
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Anchor boxes act as potential object localization candidates allow single-stage detectors to achieve real-time performance, at the cost of localization accuracy when compared to state-of-the-art two-stage detectors. Therefore, correct selection of the scale and aspect ratio associated with an anchor box is crucial for detector performance. In this work, we propose a novel architecture called DANet for improving the localization performance of single-stage object detectors, while maintaining real-time inference. The proposed network achieves this by predicting (1) the combination of aspect ratio and scale per feature map based on object density and (2) localization confidence per anchor box. We evaluate the proposed network using the benchmark dataset. On the MS COCO dataset, DANet achieves 30.9% AP at 51.8 fps using ResNet-18 and 45.3% AP at 7.4 fps using ResNeXt-101. The code and models will be available at https://github.com/PS06/AnchorNet.
引用
收藏
页码:9477 / 9483
页数:7
相关论文
共 44 条
[1]  
[Anonymous], 2018, ARXIV180703284
[2]   Soft-NMS - Improving Object Detection With One Line of Code [J].
Bodla, Navaneeth ;
Singh, Bharat ;
Chellappa, Rama ;
Davis, Larry S. .
2017 IEEE INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV), 2017, :5562-5570
[3]   Hybrid Task Cascade for Instance Segmentation [J].
Chen, Kai ;
Pang, Jiangmiao ;
Wang, Jiaqi ;
Xiong, Yu ;
Li, Xiaoxiao ;
Sun, Shuyang ;
Feng, Wansen ;
Liu, Ziwei ;
Shi, Jianping ;
Ouyang, Wanli ;
Loy, Chen Change ;
Lin, Dahua .
2019 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2019), 2019, :4969-4978
[4]   SCA-CNN: Spatial and Channel-wise Attention in Convolutional Networks for Image Captioning [J].
Chen, Long ;
Zhang, Hanwang ;
Xiao, Jun ;
Nie, Liqiang ;
Shao, Jian ;
Liu, Wei ;
Chua, Tat-Seng .
30TH IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2017), 2017, :6298-6306
[5]   Deformable Convolutional Networks [J].
Dai, Jifeng ;
Qi, Haozhi ;
Xiong, Yuwen ;
Li, Yi ;
Zhang, Guodong ;
Hu, Han ;
Wei, Yichen .
2017 IEEE INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV), 2017, :764-773
[6]  
Dai J, 2016, PROCEEDINGS 2016 IEEE INTERNATIONAL CONFERENCE ON INDUSTRIAL TECHNOLOGY (ICIT), P1796, DOI 10.1109/ICIT.2016.7475036
[7]  
Deng J, 2009, PROC CVPR IEEE, P248, DOI 10.1109/CVPRW.2009.5206848
[8]  
Fu C., 2017, ARXIV
[9]   Laplacian Pyramid Reconstruction and Refinement for Semantic Segmentation [J].
Ghiasi, Golnaz ;
Fowlkes, Charless C. .
COMPUTER VISION - ECCV 2016, PT III, 2016, 9907 :519-534
[10]   Object detection via a multi-region & semantic segmentation-aware CNN model [J].
Gidaris, Spyros ;
Komodakis, Nikos .
2015 IEEE INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV), 2015, :1134-1142