Interactive Part Segmentation Using Edge Images

被引:0
作者
Oh, Ju-Young [1 ,2 ]
Park, Jung-Min [1 ,2 ]
机构
[1] Korea Univ Sci & Technol, NT IT HCI & Robot, Daejeon 34113, South Korea
[2] Korea Inst Sci & Technol, Ctr Intelligent & Interact Robot, 5,Hwarang Ro 14 Gil, Seoul 02792, South Korea
来源
APPLIED SCIENCES-BASEL | 2021年 / 11卷 / 21期
关键词
interactive segmentation; part segmentation; object segmentation; edge image; convolutional neural network;
D O I
10.3390/app112110106
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
As more and more fields utilize deep learning, there is an increasing demand to make suitable training data for each field. The existing interactive object segmentation models can easily make the mask label data because these can accurately segment the area of the target object through user interaction. However, it is difficult to accurately segment the target part in the object using the existing models. We propose a method to increase the accuracy of part segmentation by using the proposed interactive object segmentation model trained only with edge images instead of color images. The results evaluated with the PASCAL VOC Part dataset show that the proposed method can accurately segment the target part compared to the existing interactive object segmentation model and the semantic part-segmentation model.
引用
收藏
页数:13
相关论文
共 23 条
  • [2] Encoder-Decoder with Atrous Separable Convolution for Semantic Image Segmentation
    Chen, Liang-Chieh
    Zhu, Yukun
    Papandreou, George
    Schroff, Florian
    Adam, Hartwig
    [J]. COMPUTER VISION - ECCV 2018, PT VII, 2018, 11211 : 833 - 851
  • [3] Detect What You Can: Detecting and Representing Objects using Holistic Models and Body Parts
    Chen, Xianjie
    Mottaghi, Roozbeh
    Liu, Xiaobai
    Fidler, Sanja
    Urtasun, Raquel
    Yuille, Alan
    [J]. 2014 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2014, : 1979 - 1986
  • [4] Deng J, 2009, PROC CVPR IEEE, P248, DOI 10.1109/CVPRW.2009.5206848
  • [5] The PASCAL Visual Object Classes Challenge: A Retrospective
    Everingham, Mark
    Eslami, S. M. Ali
    Van Gool, Luc
    Williams, Christopher K. I.
    Winn, John
    Zisserman, Andrew
    [J]. INTERNATIONAL JOURNAL OF COMPUTER VISION, 2015, 111 (01) : 98 - 136
  • [6] Forte M., ARXIV200307932
  • [7] Geirhos R., ARXIV181112231
  • [8] HaohanWang Zexue He, 2019, ICLR
  • [9] Hariharan B, 2011, IEEE I CONF COMP VIS, P991, DOI 10.1109/ICCV.2011.6126343
  • [10] Deep Residual Learning for Image Recognition
    He, Kaiming
    Zhang, Xiangyu
    Ren, Shaoqing
    Sun, Jian
    [J]. 2016 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2016, : 770 - 778