Disturbance-Observer-Based Sliding Mode Control Design for Nonlinear Unmanned Surface Vessel With Uncertainties

被引:36
作者
Chen, Zheng [1 ,2 ]
Zhang, Yougong [2 ]
Zhang, Youming [2 ]
Nie, Yong [1 ]
Tang, Jianzhong [1 ]
Zhu, Shiqiang [2 ,3 ]
机构
[1] Zhejiang Univ, State Key Lab Fluid Power & Mechatron Syst, Hangzhou 310027, Peoples R China
[2] Zhejiang Univ, Ocean Coll, Zhoushan 316021, Peoples R China
[3] Zhejiang Lab, Hangzhou 311100, Peoples R China
基金
中国国家自然科学基金;
关键词
Sliding mode control; disturbance observer; unmanned surface vessel (USV); Lyapunov stability theorem; TRAJECTORY TRACKING CONTROL; PATH-FOLLOWING CONTROL; VEHICLES; SYSTEMS;
D O I
10.1109/ACCESS.2019.2941364
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Unmanned surface vessel (USV) has been widely applied due to its advantages in the maritime security inspection and resources exploration. Good trajectory tracking performance is a critical issue in the control design of USV. However, most of the existing controllers are designed based on linear dynamic model or do not well consider the integrated effect nonlinearities, various uncertainties (e.g., modeling error and parameter variations) and external disturbance (wind, wave, current, etc). In this paper, a nonlinear dynamic model is established for USV with the integrate consideration of these issues, and a disturbance-observer-based sliding mode control design is subsequently proposed to achieve the good tracking performance, where the observer is to estimate and compensate the modeling uncertainties and external disturbance. Theoretically, the stability of the observer and overall closed-loop system of USV are guaranteed via the Lyapunov theorem. The comparative simulation is carried out, and the results show the fast response, better transient performance and robustness of the proposed control design.
引用
收藏
页码:148522 / 148530
页数:9
相关论文
共 39 条
[1]   Robust Adaptive Control of an Uninhabited Surface Vehicle [J].
Annamalai, A. S. K. ;
Sutton, R. ;
Yang, C. ;
Culverhouse, P. ;
Sharma, S. .
JOURNAL OF INTELLIGENT & ROBOTIC SYSTEMS, 2015, 78 (02) :319-338
[2]  
Azzeri MN, 2015, J TEKNOL, V74, P11
[3]   RBFNN-Based Adaptive Sliding Mode Control Design for Delayed Nonlinear Multilateral Telerobotic System With Cooperative Manipulation [J].
Chen, Zheng ;
Huang, Fanghao ;
Chen, Wenjie ;
Zhang, Junhui ;
Sun, Weichao ;
Chen, Jiawang ;
Gu, Jason ;
Zhu, Shiqiang .
IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, 2020, 16 (02) :1236-1247
[4]   Integrated Coordinated/Synchronized Contouring Control of a Dual-Linear-Motor-Driven Gantry [J].
Chen, Zheng ;
Li, Chao ;
Yao, Bin ;
Yuan, Mingxing ;
Yang, Can .
IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, 2020, 67 (05) :3944-3954
[5]   Adaptive Fuzzy Backstepping Control for Stable Nonlinear Bilateral Teleoperation Manipulators With Enhanced Transparency Performance [J].
Chen, Zheng ;
Huang, Fanghao ;
Yang, Chunning ;
Yao, Bin .
IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, 2020, 67 (01) :746-756
[6]   Integrated adaptive robust control for multilateral teleoperation systems under arbitrary time delays [J].
Chen, Zheng ;
Pan, Ya-Jun ;
Gu, Jason .
INTERNATIONAL JOURNAL OF ROBUST AND NONLINEAR CONTROL, 2016, 26 (12) :2708-2728
[7]   μ-Synthesis-Based Adaptive Robust Control of Linear Motor Driven Stages With High-Frequency Dynamics: A Case Study [J].
Chen, Zheng ;
Yao, Bin ;
Wang, Qingfeng .
IEEE-ASME TRANSACTIONS ON MECHATRONICS, 2015, 20 (03) :1482-1490
[8]   Adaptive Robust Precision Motion Control of Linear Motors With Integrated Compensation of Nonlinearities and Bearing Flexible Modes [J].
Chen, Zheng ;
Yao, Bin ;
Wang, Qingfeng .
IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, 2013, 9 (02) :965-973
[9]   Trajectory tracking control of underactuated USV based on modified backstepping approach [J].
Dong, Zaopeng ;
Wan, Lei ;
Li, Yueming ;
Liul, Tao ;
Zhane, Guocheng .
INTERNATIONAL JOURNAL OF NAVAL ARCHITECTURE AND OCEAN ENGINEERING, 2015, 7 (05) :817-832
[10]   Nonlinear Modeling for a Water-Jet Propulsion USV: An Experimental Study [J].
Han, Jianda ;
Xiong, Junfeng ;
He, Yuqing ;
Gu, Feng ;
Li, Decai .
IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, 2017, 64 (04) :3348-3358