The lithium intercalation process in the low-voltage lithium battery anode Li1+xV1-xO2

被引:43
作者
Armstrong, A. Robert [1 ]
Lyness, Christopher [1 ]
Panchmatia, Pooja M. [2 ]
Islam, M. Saiful [2 ]
Bruce, Peter G. [1 ]
机构
[1] Univ St Andrews, Sch Chem, EaStCHEM, St Andrews KY16 9ST, Fife, Scotland
[2] Univ Bath, Dept Chem, Bath BA2 7AY, Avon, England
基金
英国工程与自然科学研究理事会;
关键词
HIGH-CAPACITY; AB-INITIO; ION; ELECTROCHEMISTRY; STORAGE; ELECTRODES; PHASE; INTERMETALLICS; OXIDE; V2O5;
D O I
10.1038/NMAT2967
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Lithium can be reversibly intercalated into layered Li1+xV1-xO2 (LiCoO2 structure) at similar to 0:1 V, but only if x > 0. The low voltage combined with a higher density than graphite results in a higher theoretical volumetric energy density; important for future applications in portable electronics and electric vehicles. Here we investigate the crucial question, why Li cannot intercalate into LiVO2 but Li-rich compositions switch on intercalation at an unprecedented low voltage for an oxide? We show that Li C intercalated into tetrahedral sites are energetically more stable for Li-rich compositions, as they share a face with Li C on the V site in the transition metal layers. Li incorporation triggers shearing of the oxide layers from cubic to hexagonal packing because the Li2VO2 structure can accommodate two Li per formula unit in tetrahedral sites without face sharing. Such understanding is important for the future design and optimization of low-voltage intercalation anodes for lithium batteries.
引用
收藏
页码:223 / 229
页数:7
相关论文
共 51 条
[1]   The Ni3Sn4 intermetallic as a novel electrode in lithium cells [J].
Amadei, I ;
Panero, S ;
Scrosati, B ;
Cocco, G ;
Schiffini, L .
JOURNAL OF POWER SOURCES, 2005, 143 (1-2) :227-230
[2]   Nanostructured materials for advanced energy conversion and storage devices [J].
Aricò, AS ;
Bruce, P ;
Scrosati, B ;
Tarascon, JM ;
Van Schalkwijk, W .
NATURE MATERIALS, 2005, 4 (05) :366-377
[3]   Building better batteries [J].
Armand, M. ;
Tarascon, J. -M. .
NATURE, 2008, 451 (7179) :652-657
[4]   Lithium Insertion and Transport in the TiO2-B Anode Material: A Computational Study [J].
Arrouvel, Corinne ;
Parker, Stephen C. ;
Islam, M. Saiful .
CHEMISTRY OF MATERIALS, 2009, 21 (20) :4778-4783
[5]   Carbon-metal fluoride nanocomposites -: Structure and electrochemistry of FeF3:C [J].
Badway, F ;
Pereira, N ;
Cosandey, F ;
Amatucci, GG .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2003, 150 (09) :A1209-A1218
[6]   The reaction of lithium with Sn-Mn-C intermetallics prepared by mechanical alloying [J].
Beaulieu, LY ;
Dahn, JR .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2000, 147 (09) :3237-3241
[7]   FILMING MECHANISM OF LITHIUM-CARBON ANODES IN ORGANIC AND INORGANIC ELECTROLYTES [J].
BESENHARD, JO ;
WINTER, M ;
YANG, J ;
BIBERACHER, W .
JOURNAL OF POWER SOURCES, 1995, 54 (02) :228-231
[8]   Calculated cell discharge curve for lithium batteries with a V2O5 cathode [J].
Braithwaite, JS ;
Catlow, CRA ;
Gale, JD ;
Harding, JH ;
Ngoepe, PE .
JOURNAL OF MATERIALS CHEMISTRY, 2000, 10 (02) :239-240
[9]   Nanomaterials for rechargeable lithium batteries [J].
Bruce, Peter G. ;
Scrosati, Bruno ;
Tarascon, Jean-Marie .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2008, 47 (16) :2930-2946
[10]  
Burke K., 1998, ELECT DENSITY FUNCTI