The FitzHugh-Nagumo Model: Firing Modes with Time-varying Parameters & Parameter Estimation

被引:8
作者
Faghih, Rose T. [1 ]
Savla, Ketan [1 ]
Dahleh, Munther A. [1 ]
Brown, Emery N. [2 ]
机构
[1] MIT, Informat & Decis Syst Lab, Cambridge, MA 02139 USA
[2] Massachusetts Gen Hosp, Harvard Med Sch, MIT, Dept Brain & Cognit Sci, Boston, MA 02114 USA
来源
2010 ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY (EMBC) | 2010年
基金
美国国家科学基金会;
关键词
D O I
10.1109/IEMBS.2010.5627326
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
In this paper, we revisit the issue of the utility of the FitzHugh-Nagumo (FHN) model for capturing neuron firing behaviors. It has been noted (e.g., see [6]) that the FHN model cannot exhibit certain interesting firing behaviors such as bursting. We illustrate that, by allowing time-varying parameters for the FHN model, one could overcome such limitations while still retaining the low order complexity of the FHN model. We also highlight the utility of the FHN model from an estimation perspective by presenting a novel parameter estimation method that exploits the multiple time scale feature of the FHN model, and compare the performance of this method with the Extended Kalman Filter through illustrative examples.
引用
收藏
页码:4116 / 4119
页数:4
相关论文
共 50 条
[41]   TRAVELING WAVES IN THE BUFFERED FITZHUGH-NAGUMO MODEL [J].
Tsai, Je-Chiang ;
Sneyd, James .
SIAM JOURNAL ON APPLIED MATHEMATICS, 2011, 71 (05) :1606-1636
[42]   An analysis of the reliability phenomenon in the FitzHugh-Nagumo model [J].
Kosmidis, EK ;
Pakdaman, K .
JOURNAL OF COMPUTATIONAL NEUROSCIENCE, 2003, 14 (01) :5-22
[43]   A Study of the FitzHugh-Nagumo Model with Diffusion Term [J].
Amattouch, M. R. .
BOLETIM SOCIEDADE PARANAENSE DE MATEMATICA, 2025, 43
[44]   Experimental study of firing death in a network of chaotic FitzHugh-Nagumo neurons [J].
Ciszak, Marzena ;
Euzzor, Stefano ;
Arecchi, F. Tito ;
Meucci, Riccardo .
PHYSICAL REVIEW E, 2013, 87 (02)
[45]   Parameter dependence of stochastic resonance in the stochastic FitzHugh-Nagumo neuron [J].
Lee, SG ;
Kim, S .
STOCHASTIC DYNAMICS AND PATTERN FORMATION IN BIOLOGICAL AND COMPLEX SYSTEMS, 2000, 501 :250-259
[46]   Asymptotic analysis for time fractional FitzHugh-Nagumo equations [J].
Rahby, Ahmed S. ;
Yang, Zhanwen .
JOURNAL OF APPLIED MATHEMATICS AND COMPUTING, 2025, 71 (03) :3509-3532
[47]   Parameter dependence of stochastic resonance in the FitzHugh-Nagumo neuron model driven by trichotomous noise [J].
Huiqing Zhang ;
Tingting Yang ;
Yong Xu ;
Wei Xu .
The European Physical Journal B, 2015, 88
[48]   Parameter Estimation of Time-Varying ARMA Model [J].
王文华 ;
韩力 ;
王文星 .
Journal of Beijing Institute of Technology(English Edition), 2004, (02) :131-134
[49]   Parameter dependence of stochastic resonance in the FitzHugh-Nagumo neuron model driven by trichotomous noise [J].
Zhang, Huiqing ;
Yang, Tingting ;
Xu, Yong ;
Xu, Wei .
EUROPEAN PHYSICAL JOURNAL B, 2015, 88 (05)
[50]   Digital multiplierless implementation of the biological FitzHugh-Nagumo model [J].
Nouri, M. ;
Karimi, Gh. R. ;
Ahmadi, A. ;
Abbott, D. .
NEUROCOMPUTING, 2015, 165 :468-476