The FitzHugh-Nagumo Model: Firing Modes with Time-varying Parameters & Parameter Estimation

被引:7
|
作者
Faghih, Rose T. [1 ]
Savla, Ketan [1 ]
Dahleh, Munther A. [1 ]
Brown, Emery N. [2 ]
机构
[1] MIT, Informat & Decis Syst Lab, Cambridge, MA 02139 USA
[2] Massachusetts Gen Hosp, Harvard Med Sch, MIT, Dept Brain & Cognit Sci, Boston, MA 02114 USA
来源
2010 ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY (EMBC) | 2010年
基金
美国国家科学基金会;
关键词
D O I
10.1109/IEMBS.2010.5627326
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
In this paper, we revisit the issue of the utility of the FitzHugh-Nagumo (FHN) model for capturing neuron firing behaviors. It has been noted (e.g., see [6]) that the FHN model cannot exhibit certain interesting firing behaviors such as bursting. We illustrate that, by allowing time-varying parameters for the FHN model, one could overcome such limitations while still retaining the low order complexity of the FHN model. We also highlight the utility of the FHN model from an estimation perspective by presenting a novel parameter estimation method that exploits the multiple time scale feature of the FHN model, and compare the performance of this method with the Extended Kalman Filter through illustrative examples.
引用
收藏
页码:4116 / 4119
页数:4
相关论文
共 50 条
  • [1] Multiplierless Digital Implementation of Time-Varying FitzHugh-Nagumo Model
    Zahedi, Abdulhamid
    Haghiri, Saeed
    Hayati, Mohsen
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS I-REGULAR PAPERS, 2019, 66 (07) : 2662 - 2670
  • [2] PULLBACK ATTRACTORS OF FITZHUGH-NAGUMO SYSTEM ON THE TIME-VARYING DOMAINS
    Zhang, Zhen
    Huang, Jianhua
    Pu, Xueke
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2017, 22 (10): : 3691 - 3706
  • [3] Broad Range of Neural Dynamics From a Time-Varying FitzHugh-Nagumo Model and its Spiking Threshold Estimation
    Faghih, Rose T.
    Savla, Ketan
    Dahleh, Munther A.
    Brown, Emery N.
    IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, 2012, 59 (03) : 816 - 823
  • [4] Vibrational resonance in the FitzHugh-Nagumo system with time-varying delay feedback
    Hu, D. L.
    Yang, J. H.
    Liu, X. R.
    COMPUTERS IN BIOLOGY AND MEDICINE, 2014, 45 : 80 - 86
  • [5] Parameter Estimation of the FitzHugh-Nagumo Neuron Model Using Integrals Over Finite Time Periods
    Concha, Antonio
    Garrido, Ruben
    JOURNAL OF COMPUTATIONAL AND NONLINEAR DYNAMICS, 2015, 10 (02):
  • [6] Determination of firing times for the stochastic Fitzhugh-Nagumo neuronal model
    Tuckwell, HC
    Rodriguez, R
    Wan, FYM
    NEURAL COMPUTATION, 2003, 15 (01) : 143 - 159
  • [7] Synchronized firing of FitzHugh-Nagumo neurons by noise
    Kitajima, H
    Kurths, J
    CHAOS, 2005, 15 (02)
  • [8] Markov chain Monte Carlo approach to parameter estimation in the FitzHugh-Nagumo model
    Jensen, Anders Chr.
    Ditlevsen, Susanne
    Kessler, Mathieu
    Papaspiliopoulos, Omiros
    PHYSICAL REVIEW E, 2012, 86 (04):
  • [9] Parameter estimation of the FitzHugh-Nagumo model using noisy measurements for membrane potential
    Che, Yanqiu
    Geng, Li-Hui
    Han, Chunxiao
    Cui, Shigang
    Wang, Jiang
    CHAOS, 2012, 22 (02)
  • [10] Parameters Analysis of FitzHugh-Nagumo Model for a Reliable Simulation
    Xu, B.
    Binczak, S.
    Jacquir, S.
    Pont, O.
    Yahia, H.
    2014 36TH ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY (EMBC), 2014, : 4334 - 4337