Morphological solution for enhancement of electrochemical kinetic performance of LiFePO4

被引:62
作者
Li, Lianxing [1 ]
Tang, Xincun [1 ,2 ]
Liu, Hongtao [1 ]
Qu, Yi [1 ]
Lu, Zhouguang [1 ]
机构
[1] Cent S Univ, Coll Chem & Chem Engn, Changsha 410083, Peoples R China
[2] Cent S Univ, State Key Lab Powder Met, Changsha 410083, Peoples R China
基金
中国国家自然科学基金;
关键词
Cathode material; Lithium-ion cell; Solvothermal; Nanosheet; Electrochemical kinetics; ELECTRODE PERFORMANCE; PHOSPHO-OLIVINES; LITHIUM; NANOPARTICLES; DIFFUSION; LIXFEPO4;
D O I
10.1016/j.electacta.2010.09.048
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
LiFePO4/Cnanosheet composite has been prepared via a low-temperature solvothermal reaction followed by high-temperature treatment. The as-prepared sample is characterized by XRD, FDR, Raman, SEM, and TEM. It is confirmed that the nanosheets are composed of ca. 50 nm thickness of crystalline LiFePO4-core coated with ca. 10 nm thickness of carbon-shell. The charge-discharge tests show that the as-fabricated LiFePO4/C nanosheet cathode in lithium-ion cell demonstrates high reversible capacity (164 mAh g(-1) at 0.1 C) and good cycle stability (columbic efficiency 100% during 100 cycles). The cyclic voltammetric analysis indicates Li+ diffusion determines the whole electrode reaction kinetics, and the diffusion coefficient estimated by EIS is comparable to the reported data. The enhanced kinetic behavior of the as-fabricated cathode is actually originated from the nano-dimensional sheet-like morphology, which facilitates Li+ migration due to the shortened diffusion distance, and simultaneously increased exchangeable Li+ amount considering more accessible active surface. In addition, the uniformly coated thin conductive carbons contribute a lot for this enhancement because of considerably improved electronic conductivity. (C) 2010 Elsevier Ltd. All rights reserved.
引用
收藏
页码:995 / 999
页数:5
相关论文
共 27 条
[1]   Raman and FTIR spectroscopic study of LixFePO4 (0 ≤ x ≤ 1) [J].
Burba, CM ;
Frech, R .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2004, 151 (07) :A1032-A1038
[2]   Electronically conductive phospho-olivines as lithium storage electrodes [J].
Chung, SY ;
Bloking, JT ;
Chiang, YM .
NATURE MATERIALS, 2002, 1 (02) :123-128
[3]   Determination of lithium diffusion coefficient in LiFePO4 electrode by galvanostatic and potentiostatic intermittent titration techniques [J].
Churikov, A. V. ;
Ivanishchev, A. V. ;
Ivanishcheva, I. A. ;
Sycheva, V. O. ;
Khasanova, N. R. ;
Antipov, E. V. .
ELECTROCHIMICA ACTA, 2010, 55 (08) :2939-2950
[4]   The existence of a temperature-driven solid solution in LixFePO4 for 0 ≤ x ≤ 1 [J].
Delacourt, C ;
Poizot, P ;
Tarascon, JM ;
Masquelier, C .
NATURE MATERIALS, 2005, 4 (03) :254-260
[5]   Lithium deintercalation in LiFePO4 nanoparticles via a domino-cascade model [J].
Delmas, C. ;
Maccario, M. ;
Croguennec, L. ;
Le Cras, F. ;
Weill, F. .
NATURE MATERIALS, 2008, 7 (08) :665-671
[6]   Effect of surface carbon structure on the electrochemical performance of LiFePO4 [J].
Doeff, MM ;
Hu, YQ ;
McLarnon, F ;
Kostecki, R .
ELECTROCHEMICAL AND SOLID STATE LETTERS, 2003, 6 (10) :A207-A209
[7]   Synthesis of nanocrystals and morphology control of hydrothermally prepared LiFePO4 [J].
Ellis, B. ;
Kan, Wang Hay ;
Makahnouk, W. R. M. ;
Nazar, L. F. .
JOURNAL OF MATERIALS CHEMISTRY, 2007, 17 (30) :3248-3254
[8]  
Gosser D., 1994, CYCLIC VOLTAMMETRY
[9]   Superior electrode performance of nanostructured mesoporous TiO2 (anatase) through efficient hierarchical mixed conducting networks [J].
Guo, Yu-Guo ;
Hu, Yong-Sheng ;
Sigle, Wilfried ;
Maier, Joachim .
ADVANCED MATERIALS, 2007, 19 (16) :2087-+
[10]   APPLICATION OF AC TECHNIQUES TO THE STUDY OF LITHIUM DIFFUSION IN TUNGSTEN TRIOXIDE THIN-FILMS [J].
HO, C ;
RAISTRICK, ID ;
HUGGINS, RA .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1980, 127 (02) :343-350