Morphological solution for enhancement of electrochemical kinetic performance of LiFePO4

被引:62
作者
Li, Lianxing [1 ]
Tang, Xincun [1 ,2 ]
Liu, Hongtao [1 ]
Qu, Yi [1 ]
Lu, Zhouguang [1 ]
机构
[1] Cent S Univ, Coll Chem & Chem Engn, Changsha 410083, Peoples R China
[2] Cent S Univ, State Key Lab Powder Met, Changsha 410083, Peoples R China
基金
中国国家自然科学基金;
关键词
Cathode material; Lithium-ion cell; Solvothermal; Nanosheet; Electrochemical kinetics; ELECTRODE PERFORMANCE; PHOSPHO-OLIVINES; LITHIUM; NANOPARTICLES; DIFFUSION; LIXFEPO4;
D O I
10.1016/j.electacta.2010.09.048
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
LiFePO4/Cnanosheet composite has been prepared via a low-temperature solvothermal reaction followed by high-temperature treatment. The as-prepared sample is characterized by XRD, FDR, Raman, SEM, and TEM. It is confirmed that the nanosheets are composed of ca. 50 nm thickness of crystalline LiFePO4-core coated with ca. 10 nm thickness of carbon-shell. The charge-discharge tests show that the as-fabricated LiFePO4/C nanosheet cathode in lithium-ion cell demonstrates high reversible capacity (164 mAh g(-1) at 0.1 C) and good cycle stability (columbic efficiency 100% during 100 cycles). The cyclic voltammetric analysis indicates Li+ diffusion determines the whole electrode reaction kinetics, and the diffusion coefficient estimated by EIS is comparable to the reported data. The enhanced kinetic behavior of the as-fabricated cathode is actually originated from the nano-dimensional sheet-like morphology, which facilitates Li+ migration due to the shortened diffusion distance, and simultaneously increased exchangeable Li+ amount considering more accessible active surface. In addition, the uniformly coated thin conductive carbons contribute a lot for this enhancement because of considerably improved electronic conductivity. (C) 2010 Elsevier Ltd. All rights reserved.
引用
收藏
页码:995 / 999
页数:5
相关论文
共 27 条
  • [1] Raman and FTIR spectroscopic study of LixFePO4 (0 ≤ x ≤ 1)
    Burba, CM
    Frech, R
    [J]. JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2004, 151 (07) : A1032 - A1038
  • [2] Electronically conductive phospho-olivines as lithium storage electrodes
    Chung, SY
    Bloking, JT
    Chiang, YM
    [J]. NATURE MATERIALS, 2002, 1 (02) : 123 - 128
  • [3] Determination of lithium diffusion coefficient in LiFePO4 electrode by galvanostatic and potentiostatic intermittent titration techniques
    Churikov, A. V.
    Ivanishchev, A. V.
    Ivanishcheva, I. A.
    Sycheva, V. O.
    Khasanova, N. R.
    Antipov, E. V.
    [J]. ELECTROCHIMICA ACTA, 2010, 55 (08) : 2939 - 2950
  • [4] The existence of a temperature-driven solid solution in LixFePO4 for 0 ≤ x ≤ 1
    Delacourt, C
    Poizot, P
    Tarascon, JM
    Masquelier, C
    [J]. NATURE MATERIALS, 2005, 4 (03) : 254 - 260
  • [5] Lithium deintercalation in LiFePO4 nanoparticles via a domino-cascade model
    Delmas, C.
    Maccario, M.
    Croguennec, L.
    Le Cras, F.
    Weill, F.
    [J]. NATURE MATERIALS, 2008, 7 (08) : 665 - 671
  • [6] Effect of surface carbon structure on the electrochemical performance of LiFePO4
    Doeff, MM
    Hu, YQ
    McLarnon, F
    Kostecki, R
    [J]. ELECTROCHEMICAL AND SOLID STATE LETTERS, 2003, 6 (10) : A207 - A209
  • [7] Synthesis of nanocrystals and morphology control of hydrothermally prepared LiFePO4
    Ellis, B.
    Kan, Wang Hay
    Makahnouk, W. R. M.
    Nazar, L. F.
    [J]. JOURNAL OF MATERIALS CHEMISTRY, 2007, 17 (30) : 3248 - 3254
  • [8] Gosser D., 1994, CYCLIC VOLTAMMETRY
  • [9] Superior electrode performance of nanostructured mesoporous TiO2 (anatase) through efficient hierarchical mixed conducting networks
    Guo, Yu-Guo
    Hu, Yong-Sheng
    Sigle, Wilfried
    Maier, Joachim
    [J]. ADVANCED MATERIALS, 2007, 19 (16) : 2087 - +
  • [10] APPLICATION OF AC TECHNIQUES TO THE STUDY OF LITHIUM DIFFUSION IN TUNGSTEN TRIOXIDE THIN-FILMS
    HO, C
    RAISTRICK, ID
    HUGGINS, RA
    [J]. JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1980, 127 (02) : 343 - 350