Runge-Lenz operator for Dirac field in Taub-NUT background

被引:18
作者
Cotaescu, II
Visinescu, M
机构
[1] W Univ Timisoara, RO-1900 Timisoara, Romania
[2] Natl Inst Phys & Nucl Engn, Dept Theoret Phys, Bucharest, Romania
关键词
D O I
10.1016/S0370-2693(01)00184-8
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
Fermions in D = 4 self-dual Euclidean Taub-NUT space are investigated. Dirac-type operators involving Killing-Yano tensors of the Taub-NUT geometry are explicitly given showing that they anticommute with the standard Dirac operator and commute with the Hamiltonian as it is expected. They are connected with the hidden symmetries of the space allowing the construction of a conserved vector operator analogous to the Runge-Lenz vector of the Kepler problem. This operator is written down pointing out its algebraic properties. (C) 2001 Published by Elsevier Science B.V.
引用
收藏
页码:229 / 234
页数:6
相关论文
共 31 条
[1]   LOW-ENERGY SCATTERING OF NON-ABELIAN MONOPOLES [J].
ATIYAH, MF ;
HITCHIN, NJ .
PHYSICS LETTERS A, 1985, 107 (01) :21-25
[2]  
BAIS A, 1984, NUCL PHYS B, V245, P469
[3]   PARTICLE SPIN DYNAMICS AS GRASSMANN VARIANT OF CLASSICAL MECHANICS [J].
BEREZIN, FA ;
MARINOV, MS .
ANNALS OF PHYSICS, 1977, 104 (02) :336-362
[4]   HELICITY-SUPERSYMMETRY OF DYONS [J].
BLOORE, F ;
HORVATHY, PA .
JOURNAL OF MATHEMATICAL PHYSICS, 1992, 33 (05) :1869-1877
[5]   GAUGE FIELD CONFIGURATIONS IN CURVED SPACE-TIMES .4. SELF-DUAL SU(2) FIELDS IN MULTI-CENTER SPACES [J].
BOUTALEBJOUTEI, H ;
CHAKRABARTI, A ;
COMTET, A .
PHYSICAL REVIEW D, 1980, 21 (08) :2280-2284
[6]   KILLING TENSOR QUANTUM NUMBERS AND CONSERVED CURRENTS IN CURVED SPACE [J].
CARTER, B .
PHYSICAL REVIEW D, 1977, 16 (12) :3395-3414
[7]   GENERALIZED TOTAL ANGULAR-MOMENTUM OPERATOR FOR THE DIRAC-EQUATION IN CURVED SPACE-TIME [J].
CARTER, B ;
MCLENAGHAN, RG .
PHYSICAL REVIEW D, 1979, 19 (04) :1093-1097
[8]   THE DIRAC-EQUATION IN TAUB-NUT SPACE [J].
COMTET, A ;
HORVATHY, PA .
PHYSICS LETTERS B, 1995, 349 (1-2) :49-56
[9]   O(4,2) DYNAMICAL SYMMETRY OF THE KALUZA-KLEIN MONOPOLE [J].
CORDANI, B ;
FEHER, G ;
HORVATHY, PA .
PHYSICS LETTERS B, 1988, 201 (04) :481-486
[10]   External symmetry in general relativity [J].
Cotaescu, II .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2000, 33 (50) :9177-9192