Extension of Disease Risk Score-Based Confounding Adjustments for Multiple Outcomes of Interest: An Empirical Evaluation

被引:8
作者
Desai, Rishi J. [1 ,2 ]
Wyss, Richard [1 ,2 ]
Jin, Yinzhu [1 ,2 ]
Bohn, Justin [1 ,2 ]
Toh, Sengwee [3 ,4 ]
Cosgrove, Austin [3 ,4 ]
Kennedy, Adee [3 ,4 ]
Kim, Jessica [5 ]
Kim, Clara [5 ]
Ouellet-Hellstrom, Rita [6 ]
Karami, Sara [6 ]
Major, Jacqueline M. [6 ]
Niman, Aaron [6 ]
Wang, Shirley, V [1 ,2 ]
Gagne, Joshua J. [1 ,2 ]
机构
[1] Brigham & Womens Hosp, Dept Med, Div Pharmacoepidemiol & Pharmacoecon, 1620 Tremont St,Suite 3030-R, Boston, MA 02120 USA
[2] Harvard Med Sch, 1620 Tremont St,Suite 3030-R, Boston, MA 02120 USA
[3] Harvard Med Sch, Dept Populat Med, Boston, MA 02120 USA
[4] Harvard Pilgrim Hlth Care Inst, Boston, MA USA
[5] US FDA, Off Biostat, Ctr Drug Evaluat & Res, Silver Spring, MD USA
[6] US FDA, Off Surveillance & Epidemiol, Ctr Drug Evaluat & Res, Silver Spring, MD USA
基金
美国医疗保健研究与质量局;
关键词
confounding adjustment; disease risk score; observational studies; PROPENSITY SCORES; DABIGATRAN; WARFARIN; SURVEILLANCE; PERFORMANCE; REGRESSION; MORTALITY; FOOD;
D O I
10.1093/aje/kwy130
中图分类号
R1 [预防医学、卫生学];
学科分类号
1004 ; 120402 ;
摘要
Use of disease risk score (DRS)-based confounding adjustment when estimating treatment effects on multiple outcomes is not well studied. We designed an empirical cohort study to compare dabigatran initiators and warfarin initiators with respect to risks of ischemic stroke and major bleeding in 12 sequential monitoring periods (90 days each), using data from the Truven Marketscan database (Truven Health Analytics, Ann Arbor, Michigan). We implemented 2 approaches to combine DRS for multiple outcomes: 1) 1:1 matching on prognostic propensity scores (PPS), created using DRS for bleeding and stroke as independent variables in a propensity score (PS) model; and 2) simultaneous 1:1 matching on DRS for bleeding and stroke using Mahalanobis distance (M-distance), and compared their performance with that of traditional PS matching. M-distance matching appeared to produce more stable results in the early marketing period than both PPS and traditional PS matching; hazard ratios from unadjusted analysis, traditional PS matching, PPS matching, and M-distance matching after 4 periods were 0.72 (95% confidence interval (CI): 0.51, 1.03), 0.61 (95% CI: 0.31, 1.09), 0.55 (95% CI: 0.33,0.91), and 0.78 (95% CI: 0.45, 1.34), respectively, for stroke and 0.65 (95% CI: 0.53,0.80), 0.78 (95% CI: 0.60, 1.01), 0.75 (95% CI: 0.59, 0.96), and 0.78 (95% CI: 0.64, 0.95), respectively, for bleeding. In later periods, estimates were similar for traditional PS matching and M-distance matching but suggested potential residual confounding with PPS matching. These results suggest that M-distance matching may be a valid approach for extension of DRS-based confounding adjustments for multiple outcomes of interest.
引用
收藏
页码:2439 / 2448
页数:10
相关论文
共 28 条
[1]   Performance of Disease Risk Scores, Propensity Scores, and Traditional Multivariable Outcome Regression in the Presence of Multiple Confounders [J].
Arbogast, Patrick G. ;
Ray, Wayne A. .
AMERICAN JOURNAL OF EPIDEMIOLOGY, 2011, 174 (05) :613-620
[2]   Use of disease risk scores in pharmacoepidemiologic studies [J].
Arbogast, Patrick G. ;
Ray, Wayne A. .
STATISTICAL METHODS IN MEDICAL RESEARCH, 2009, 18 (01) :67-80
[3]   Introduction to the Analysis of Survival Data in the Presence of Competing Risks [J].
Austin, Peter C. ;
Lee, Douglas S. ;
Fine, Jason P. .
CIRCULATION, 2016, 133 (06) :601-609
[4]   Some Methods of Propensity-Score Matching had Superior Performance to Others: Results of an Empirical Investigation and Monte Carlo simulations [J].
Austin, Peter C. .
BIOMETRICAL JOURNAL, 2009, 51 (01) :171-184
[5]  
Bohn J, 2016, PHARMACOEPIDEM DR S, V25, P479
[6]   Prospective surveillance pilot of rivaroxaban safety within the US Food and Drug Administration Sentinel System [J].
Chrischilles, Elizabeth A. ;
Gagne, Joshua J. ;
Fireman, Bruce ;
Nelson, Jennifer ;
Toh, Sengwee ;
Shoaibi, Azadeh ;
Reichman, Marsha E. ;
Wang, Shirley ;
Nguyen, Michael ;
Zhang, Rongmei ;
Izem, Rima ;
Goulding, Margie R. ;
Southworth, Mary Ross ;
Graham, David J. ;
Fuller, Candace ;
Katcoff, Hannah ;
Woodworth, Tiffany ;
Rogers, Catherine ;
Saliga, Ryan ;
Lin, Nancy D. ;
McMahill-Walraven, Cheryl N. ;
Nair, Vinit P. ;
Haynes, Kevin ;
Carnahan, Ryan M. .
PHARMACOEPIDEMIOLOGY AND DRUG SAFETY, 2018, 27 (03) :263-271
[7]   Dabigatran versus Warfarin in Patients with Atrial Fibrillation. [J].
Connolly, Stuart J. ;
Ezekowitz, Michael D. ;
Yusuf, Salim ;
Eikelboom, John ;
Oldgren, Jonas ;
Parekh, Amit ;
Pogue, Janice ;
Reilly, Paul A. ;
Themeles, Ellison ;
Varrone, Jeanne ;
Wang, Susan ;
Alings, Marco ;
Xavier, Denis ;
Zhu, Jun ;
Diaz, Rafael ;
Lewis, Basil S. ;
Darius, Harald ;
Diener, Hans-Christoph ;
Joyner, Campbell D. ;
Wallentin, Lars .
NEW ENGLAND JOURNAL OF MEDICINE, 2009, 361 (12) :1139-1151
[8]  
Division of Pharmacoepidemiology and Pharmacoeconomics Department of Medicine Brigham and Women's Hospital and Harvard Medical School, DIS RISK SCOR PROP H
[9]   Role of disease risk scores in comparative effectiveness research with emerging therapies [J].
Glynn, Robert J. ;
Gagne, Joshua J. ;
Schneeweiss, Sebastian .
PHARMACOEPIDEMIOLOGY AND DRUG SAFETY, 2012, 21 :138-147
[10]   Outcomes of Dabigatran and Warfarin for Atrial Fibrillation in Contemporary Practice A Retrospective Cohort Study [J].
Go, Alan S. ;
Singer, Daniel E. ;
Toh, Sengwee ;
Cheetham, T. Craig ;
Reichman, Marsha E. ;
Graham, David J. ;
Southworth, Mary Ross ;
Zhang, Rongmei ;
Izem, Rima ;
Goulding, Margie R. ;
Houstoun, Monika ;
Mott, Katrina ;
Sung, Sue Hee ;
Gagne, Joshua J. .
ANNALS OF INTERNAL MEDICINE, 2017, 167 (12) :845-+