Volatility Uncertainty Quantification in a Stochastic Control Problem Applied to Energy

被引:2
作者
Bernal, Francisco [1 ]
Gobet, Emmanuel [1 ]
Printems, Jacques [2 ]
机构
[1] Ecole Polytech, CMAP, Palaiseau, France
[2] Univ Paris Est Creteil, LAMA, Creteil, France
关键词
Chaos expansion; Uncertainty quantification; Stochastic control; Stochastic programming; Swing options; Monte Carlo simulations; 93Exx; NUMERICAL-METHODS; VALUATION;
D O I
10.1007/s11009-019-09692-x
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
This work designs a methodology to quantify the uncertainty of a volatility parameter in a stochastic control problem arising in energy management. The difficulty lies in the non-linearity of the underlying scalar Hamilton-Jacobi-Bellman equation. We proceed by decomposing the unknown solution on a Hermite polynomial basis (of the unknown volatility), whose different coefficients are solutions to a system of second order parabolic non-linear PDEs. Numerical tests show that computing the first basis elements may be enough to get an accurate approximation with respect to the uncertain volatility parameter. We provide an example of the methodology in the context of a swing contract (energy contract with flexibility in purchasing energy power), this allows us to introduce the concept of Uncertainty Value Adjustment (UVA), whose aim is to value the risk of misspecification of the volatility model.
引用
收藏
页码:135 / 159
页数:25
相关论文
共 29 条
[11]  
BRENNAN MJ, 1991, CONTRIB TO ECON ANAL, V200, P33
[12]   SIMULATION OF BSDES BY WIENER CHAOS EXPANSION [J].
Briand, Philippe ;
Labart, Celine .
ANNALS OF APPLIED PROBABILITY, 2014, 24 (03) :1129-1171
[13]   Time-dependent generalized polynomial chaos [J].
Gerritsma, Marc ;
van der Steen, Jan-Bart ;
Vos, Peter ;
Karniadakis, George .
JOURNAL OF COMPUTATIONAL PHYSICS, 2010, 229 (22) :8333-8363
[14]   LAN property for ergodic diffusions with discrete observations [J].
Gobet, E .
ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES, 2002, 38 (05) :711-737
[15]  
Harvey A. C., 1989, Forecasting, Structural Time Series Models and the Kalman Filter
[16]   Solving Stochastic Optimal Control Problems by a Wiener Chaos Approach [J].
Huschto, Tony ;
Sager, Sebastian .
VIETNAM JOURNAL OF MATHEMATICS, 2014, 42 (01) :83-113
[17]   Valuation of commodity-based swing options [J].
Jaillet, P ;
Ronn, EI ;
Tompaidis, S .
MANAGEMENT SCIENCE, 2004, 50 (07) :909-921
[18]  
Keppo J., 2004, Journal of Derivatives, V11, P26, DOI [10.3905/jod.2004.391033, DOI 10.3905/JOD.2004.391033]
[19]  
LeMaitre OP, 2010, SCI COMPUT, P1, DOI 10.1007/978-90-481-3520-2
[20]   Viscosity solutions of fully nonlinear parabolic systems [J].
Liu, WI ;
Yang, Y ;
Lu, G .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2003, 281 (01) :362-381