Recurrence for persistent random walks in two dimensions

被引:6
作者
Lenci, Marco [1 ]
机构
[1] Stevens Inst Technol, Dept Math Sci, Hoboken, NJ 07030 USA
基金
美国国家科学基金会;
关键词
persistent random walks; Newtonian random walks; recurrence; random environment; dual graph; Schmidt-Conze theorem; Toth environments;
D O I
10.1142/S0219493707001937
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We discuss the question of recurrence for persistent, or Newtonian, random walks in Z(2), i.e. random walks whose transition probabilities depend both on the walker's position and incoming direction. We use results by Toth and Schmidt-Conze to prove recurrence for a large class of such processes, including all "invertible" walks in elliptic random environments. Furthermore, rewriting our Newtonian walks as ordinary random walks in a suitable graph, we gain a better idea of the geometric features of the problem, and obtain further examples of recurrence.
引用
收藏
页码:53 / 74
页数:22
相关论文
共 50 条
[31]   Global survival of branching random walks and tree-like branching random walks [J].
Bertacchi, Daniela ;
Coletti, Cristian F. ;
Zucca, Fabio .
ALEA-LATIN AMERICAN JOURNAL OF PROBABILITY AND MATHEMATICAL STATISTICS, 2017, 14 (01) :381-402
[32]   DETERMINISTIC WALKS IN RANDOM ENVIRONMENT [J].
Aimino, Romain ;
Liverani, Carlangelo .
ANNALS OF PROBABILITY, 2020, 48 (05) :2212-2257
[33]   Recurrence of horizontal-vertical walks [J].
Chan, Swee Hong .
ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES, 2023, 59 (02) :578-605
[34]   Open quantum random walks and quantum Markov Chains on trees II: the recurrence [J].
Farrukh Mukhamedov ;
Abdessatar Souissi ;
Tarek Hamdi ;
Amenallah Andolsi .
Quantum Information Processing, 22
[35]   Open quantum random walks and quantum Markov Chains on trees II: the recurrence [J].
Mukhamedov, Farrukh ;
Souissi, Abdessatar ;
Hamdi, Tarek ;
Andolsi, Amenallah .
QUANTUM INFORMATION PROCESSING, 2023, 22 (06)
[36]   HARMONIC FUNCTIONS, h-TRANSFORM AND LARGE DEVIATIONS FOR RANDOM WALKS IN RANDOM ENVIRONMENTS IN DIMENSIONS FOUR AND HIGHER [J].
Yilmaz, Atilla .
ANNALS OF PROBABILITY, 2011, 39 (02) :471-506
[37]   Traveling fronts in self-replicating persistent random walks with multiple internal states [J].
Ishihara, Keisuke ;
George, Ashish B. ;
Cornelius, Ryan ;
Korolev, Kirill S. .
NEW JOURNAL OF PHYSICS, 2020, 22 (08)
[38]   ANOMALOUS RECURRENCE PROPERTIES OF MANY-DIMENSIONAL ZERO-DRIFT RANDOM WALKS [J].
Georgiou, Nicholas ;
Menshikov, Mikhail V. ;
Mijatovic, Aleksandar ;
Wade, Andrew R. .
ADVANCES IN APPLIED PROBABILITY, 2016, 48 (0A) :99-118
[39]   ON THE RANGE OF RANDOM WALKS IN RANDOM ENVIRONMENT [J].
ZHOU XIANYINDepartment of Mathematics Beijing Normal University Beijing China .
ChineseAnnalsofMathematics, 1995, (01) :131-138
[40]   Biased random walks on random graphs [J].
Ben Arous, Gerard ;
Fribergh, Alexander .
PROBABILITY AND STATISTICAL PHYSICS IN ST. PETERSBURG, 2016, 91 :99-153