Tunable Repression of Key Photosynthetic Processes Using Cas12a CRISPR Interference in the Fast-Growing Cyanobacterium Synechococcus sp. UTEX 2973

被引:34
作者
Knoot, Cory J. [1 ]
Biswas, Sandeep [1 ]
Pakrasi, Himadri B. [1 ]
机构
[1] Washington Univ, Dept Biol, Campus Box 1137, St Louis, MO 63130 USA
来源
ACS SYNTHETIC BIOLOGY | 2020年 / 9卷 / 01期
关键词
cyanobacteria; synthetic biology; CRISPR interference; photosynthesis; photosystem I; glycogen; PHOTOSYSTEM-I; BTPA PROTEIN; SYNECHOCYSTIS; BIOSYNTHESIS;
D O I
10.1021/acssynbio.9b00417
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Cyanobacteria are photoautotrophic prokaryotes that serve as key model organisms to study basic photosynthetic processes and are potential carbon-negative production chassis for commodity and high-value chemicals. The development of new synthetic biology tools and improvement of current ones is a requisite for furthering these organisms as models and production vehicles. CRISPR interference (CRISPRi) allows for targeted gene repression using a DNase-dead Cas nuclease ("dCas"). Here, we describe a titratable dCas12a (dCpf1) CRISPRi system and apply it to repress key photosynthetic processes in the fast-growing cyanobacterium Synechococcus sp. UTEX 2973 (S2973). The system relies on a lac repressor system that retains tight regulation in the absence of inducer (0-10% repression) while maintaining the capability for >90% repression of high-abundance gene targets. We determined that dCas12a is less toxic than dCas9. We tested the efficacy of the system toward eYFP and three native targets in S2973: the phycobilisome antenna, glycogen synthesis, and photosystem I (PSI), an essential part of the photosynthetic electron transport chain in oxygenic photoautotrophs. PSI was knocked down indirectly by repressing the protein factor BtpA involved in stabilizing core PSI proteins. We could reduce cellular PSI titer by 87% under photoautotrophic conditions, and we characterized these cells to gain insights into the response of the strain to the low PSI content. The ability to tightly regulate and time the (de)repression of essential genes in trans will allow for the study of photosynthetic processes that are not accessible using knockout mutants.
引用
收藏
页码:132 / 143
页数:23
相关论文
共 54 条
[1]   Glycogen production for biofuels by the euryhaline cyanobacteria Synechococcus sp strain PCC 7002 from an oceanic environment [J].
Aikawa, Shimpei ;
Nishida, Atsumi ;
Ho, Shih-Hsin ;
Chang, Jo-Shu ;
Hasunuma, Tomohisa ;
Kondo, Akihiko .
BIOTECHNOLOGY FOR BIOFUELS, 2014, 7
[2]   Metabolic engineering of cyanobacteria for the synthesis of commodity products [J].
Angermayr, S. Andreas ;
Rovira, Aleix Gorchs ;
Hellingwerf, Klaas J. .
TRENDS IN BIOTECHNOLOGY, 2015, 33 (06) :352-361
[3]   PHOTOCHEMICAL ACTIVITY AND COMPONENTS OF MEMBRANE PREPARATIONS FROM BLUE-GREEN-ALGAE .1. COEXISTENCE OF 2 PHOTOSYSTEMS IN RELATION TO CHLOROPHYLL ALPHA AND REMOVAL OF PHYCOCYANIN [J].
ARNON, DI ;
MCSWAIN, BD ;
TSUJIMOTO, HY ;
WADA, K .
BIOCHIMICA ET BIOPHYSICA ACTA, 1974, 357 (02) :231-245
[4]   Molecular identification of a novel protein that regulates biogenesis of photosystem .1. A membrane protein complex [J].
Bartsevich, VV ;
Pakrasi, HB .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1997, 272 (10) :6382-6387
[5]   CRISPR-Based Technologies for Metabolic Engineering in Cyanobacteria [J].
Behler, Juliane ;
Vijay, Dhanya ;
Hess, Wolfgang R. ;
Akhtar, M. Kalim .
TRENDS IN BIOTECHNOLOGY, 2018, 36 (10) :996-1010
[6]   Synthetic biology of cyanobacteria: unique challenges and opportunities [J].
Berla, Bertram M. ;
Saha, Rajib ;
Immethun, Cheryl M. ;
Maranas, Costas D. ;
Moon, Tae Seok ;
Pakrasi, Himadri B. .
FRONTIERS IN MICROBIOLOGY, 2013, 4
[7]   Small CRISPR RNAs guide antiviral defense in prokaryotes [J].
Brouns, Stan J. J. ;
Jore, Matthijs M. ;
Lundgren, Magnus ;
Westra, Edze R. ;
Slijkhuis, Rik J. H. ;
Snijders, Ambrosius P. L. ;
Dickman, Mark J. ;
Makarova, Kira S. ;
Koonin, Eugene V. ;
van der Oost, John .
SCIENCE, 2008, 321 (5891) :960-964
[8]  
Camsund Daniel, 2014, Front Bioeng Biotechnol, V2, P40, DOI 10.3389/fbioe.2014.00040
[9]   Self-replicating shuttle vectors based on pANS, a small endogenous plasmid of the unicellular cyanobacterium Synechococcus elongatus PCC 7942 [J].
Chen, You ;
Taton, Arnaud ;
Go, Michaela ;
London, Ross E. ;
Pieper, Lindsey M. ;
Golden, Susan S. ;
Golden, James W. .
MICROBIOLOGY-SGM, 2016, 162 (12) :2029-2041
[10]  
Davies Fiona K, 2014, Front Bioeng Biotechnol, V2, P21, DOI 10.3389/fbioe.2014.00021