Federated learning on non-IID data: A survey

被引:367
|
作者
Zhu, Hangyu [1 ]
Xu, Jinjin [2 ]
Liu, Shiqing [1 ]
Jin, Yaochu [1 ]
机构
[1] Univ Surrey, Dept Comp Sci, Guildford GU2 7XH, Surrey, England
[2] East China Univ Sci Technol, Key Lab Smart Mfg Energy Chem Proc, Minist Educ, Shanghai 200237, Peoples R China
关键词
Federated learning; Machine learning; Non-IID data; Privacy preservation; CHALLENGES; ALGORITHM; NETWORKS; PRIVACY;
D O I
10.1016/j.neucom.2021.07.098
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Federated learning is an emerging distributed machine learning framework for privacy preservation. However, models trained in federated learning usually have worse performance than those trained in the standard centralized learning mode, especially when the training data are not independent and identically distributed (Non-IID) on the local devices. In this survey, we provide a detailed analysis of the influence of Non-IID data on both parametric and non-parametric machine learning models in both horizontal and vertical federated learning. In addition, current research work on handling challenges of NonIID data in federated learning are reviewed, and both advantages and disadvantages of these approaches are discussed. Finally, we suggest several future research directions before concluding the paper. (c) 2021 Elsevier B.V. All rights reserved.
引用
收藏
页码:371 / 390
页数:20
相关论文
共 50 条
  • [1] Federated Learning With Non-IID Data: A Survey
    Lu, Zili
    Pan, Heng
    Dai, Yueyue
    Si, Xueming
    Zhang, Yan
    IEEE INTERNET OF THINGS JOURNAL, 2024, 11 (11): : 19188 - 19209
  • [2] A Survey of Federated Learning on Non-IID Data
    HAN Xuming
    GAO Minghan
    WANG Limin
    HE Zaobo
    WANG Yanze
    ZTECommunications, 2022, 20 (03) : 17 - 26
  • [3] Adaptive Federated Learning With Non-IID Data
    Zeng, Yan
    Mu, Yuankai
    Yuan, Junfeng
    Teng, Siyuan
    Zhang, Jilin
    Wan, Jian
    Ren, Yongjian
    Zhang, Yunquan
    COMPUTER JOURNAL, 2023, 66 (11): : 2758 - 2772
  • [4] Federated Learning With Taskonomy for Non-IID Data
    Jamali-Rad, Hadi
    Abdizadeh, Mohammad
    Singh, Anuj
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2023, 34 (11) : 8719 - 8730
  • [5] Non-IID Federated Learning
    Cao, Longbing
    IEEE INTELLIGENT SYSTEMS, 2022, 37 (02) : 14 - 15
  • [6] Differentially private federated learning with non-IID data
    Cheng, Shuyan
    Li, Peng
    Wang, Ruchuan
    Xu, He
    COMPUTING, 2024, 106 (07) : 2459 - 2488
  • [7] Fast converging Federated Learning with Non-IID Data
    Naas, Si -Ahmed
    Sigg, Stephan
    2023 IEEE 97TH VEHICULAR TECHNOLOGY CONFERENCE, VTC2023-SPRING, 2023,
  • [8] Adaptive Federated Deep Learning With Non-IID Data
    Zhang, Ze-Hui
    Li, Qing-Dan
    Fu, Yao
    He, Ning-Xin
    Gao, Tie-Gang
    Zidonghua Xuebao/Acta Automatica Sinica, 2023, 49 (12): : 2493 - 2506
  • [9] Federated Dictionary Learning from Non-IID Data
    Gkillas, Alexandros
    Ampeliotis, Dimitris
    Berberidis, Kostas
    2022 IEEE 14TH IMAGE, VIDEO, AND MULTIDIMENSIONAL SIGNAL PROCESSING WORKSHOP (IVMSP), 2022,
  • [10] Dual Adversarial Federated Learning on Non-IID Data
    Zhang, Tao
    Yang, Shaojing
    Song, Anxiao
    Li, Guangxia
    Dong, Xuewen
    KNOWLEDGE SCIENCE, ENGINEERING AND MANAGEMENT, KSEM 2022, PT III, 2022, 13370 : 233 - 246