Influence of optically active defects on thermal conductivity of polycrystalline diamond

被引:1
作者
Kong, Qinyu [1 ]
Tarun, Alvarado [2 ]
Yap, Chuan Ming [2 ]
Xiao, Siwei [2 ]
Liang, Kun [1 ]
Tay, Beng Kang [1 ]
Misra, Devi Shanker [2 ]
机构
[1] Nanyang Technol Univ, Sch Elect & Elect Engn, Nanoelect Ctr Excellence, NOVITAS, Singapore 639798, Singapore
[2] IIa Technol Pte Ltd, 17 Tukang Innovat Dr, Singapore 618300, Singapore
关键词
CHEMICAL-VAPOR-DEPOSITION; THIN DIELECTRIC FILMS; CVD DIAMOND; NITROGEN; IMPURITIES;
D O I
10.1051/epjap/2017170217
中图分类号
O59 [应用物理学];
学科分类号
摘要
We systematically studied the influence of optically active defects on thermal conductivity for polycrystalline diamonds (PCDs) with different colour, crystalline quality and impurity concentrations. The thermal conductivities of PCDs on the growth (top) and nucleation (bottom) surfaces were characterized with 3 omega technique. It is found that the bottom surface shows lower thermal conductivity as compared to the top surface. This could be due to the higher defect density in the bottom surface. Defects analyzed includes non-diamond carbon phase, C-H stretching vibration, Si vacancy, and substitutional nitrogen (Ns(0)). Our results suggest that, for the top surface, the heat transport is mainly controlled by the concentration of Ns(0). For the bottom surface, non-diamond carbon phase, Si vacancy, C-H stretch and Ns(0) defects all lead to an obvious reduction in the thermal conductivity. Most importantly, we derived a well fitted equation that estimates the thermal conductivity by optical transmittance, and the equation was demonstrated to be valid at any wavelength in visible region.
引用
收藏
页数:8
相关论文
共 50 条
[31]   Report on a second round robin measurement of the thermal conductivity of CVD diamond [J].
Graebner, JE ;
Altmann, H ;
Balzaretti, NM ;
Campbell, R ;
Chae, HB ;
Degiovanni, A ;
Enck, R ;
Feldman, A ;
Fournier, D ;
Fricke, J ;
Goela, JS ;
Gray, KJ ;
Gu, YQ ;
Hatta, I ;
Hartnett, TM ;
Imhof, RE ;
Kato, R ;
Koidl, P ;
Kuo, PK ;
Lee, TK ;
Maillet, D ;
Remy, B ;
Roger, JP ;
Seong, DJ ;
Tye, RP ;
Verhoeven, H ;
Wörner, E ;
Yehoda, JE ;
Zachai, R ;
Zhang, B .
DIAMOND AND RELATED MATERIALS, 1998, 7 (11-12) :1589-1604
[32]   Thermal Conductivity of Diamond Mosaic Crystals Grown by Chemical Vapor Deposition: Thermal Resistance of Junctions [J].
Ralchenko, V. G. ;
Inyushkin, A. V. ;
Shu, Guoyang ;
Dai, Bing ;
Karateev, I. A. ;
Bolshakov, A. P. ;
Khomich, A. A. ;
Ashkinazi, E. E. ;
Zavedeev, E. V. ;
Han, Jiecai ;
Zhu, Jiaqi .
PHYSICAL REVIEW APPLIED, 2021, 16 (01)
[33]   Research Progress on Thermal Conductivity of Graphdiyne Nanoribbons and its Defects: A Review [J].
Tian, Wenchao ;
Cheng, Chunmin ;
Wang, Chuqiao ;
Li, Wenhua .
RECENT PATENTS ON NANOTECHNOLOGY, 2020, 14 (04) :294-306
[34]   Influence of diamond particle size on the thermal and mechanical properties of glass-diamond composites [J].
Feng, Dandan ;
Li, Zhihong ;
Zhu, Yumei ;
Ji, Huanli .
MATERIALS SCIENCE AND ENGINEERING B-ADVANCED FUNCTIONAL SOLID-STATE MATERIALS, 2018, 227 :122-128
[35]   Thermal conductivity of type-Ib HPHT synthetic diamond irradiated with electrons [J].
Inyushkin, A. V. ;
Taldenkov, A. N. ;
Yelisseyev, A. P. ;
Vins, V. G. .
DIAMOND AND RELATED MATERIALS, 2023, 139
[36]   Boron doped diamond films: A microwave attenuation material with high thermal conductivity [J].
Ding, Minghui ;
Liu, Yanqing ;
Lu, Xinru ;
Li, Yifeng ;
Tang, Weizhong .
APPLIED PHYSICS LETTERS, 2019, 114 (16)
[37]   Temperature dependent thermal conductivity of IIa diamond by laser excited Raman spectroscopy [J].
Guo, Zhijian ;
Wang, Liang ;
Wang, Kaiyue ;
Ren, Chunhui ;
Guo, Ruiang ;
Zhang, Yufei ;
Tian, Yuming ;
Wang, Hongxing .
APPLIED PHYSICS LETTERS, 2021, 118 (19)
[38]   Thermal conductivity enhancement in cutting tools by chemical vapor deposition diamond coating [J].
Miranzo, P ;
Osendi, MI ;
Garcia, E ;
Fernandes, AJS ;
Silva, VA ;
Costa, FM ;
Silva, RF .
DIAMOND AND RELATED MATERIALS, 2002, 11 (3-6) :703-707
[39]   Tunable thermal conductivity along graphene/hexagonal boron-nitride polycrystalline heterostructures [J].
Vahedi, Ali ;
Lahidjani, Mohammad Homayoune Sadr .
EUROPEAN PHYSICAL JOURNAL PLUS, 2017, 132 (10)
[40]   Enhanced thermal conductivity of polycrystalline aluminum nitride thin films by optimizing the interface structure [J].
Pan, T. S. ;
Zhang, Y. ;
Huang, J. ;
Zeng, B. ;
Hong, D. H. ;
Wang, S. L. ;
Zeng, H. Z. ;
Gao, M. ;
Huang, W. ;
Lin, Y. .
JOURNAL OF APPLIED PHYSICS, 2012, 112 (04)