Strong and tunable anti-CRISPR/Cas activities in plants

被引:25
作者
Calvache, Camilo [1 ]
Vazquez-Vilar, Marta [1 ]
Selma, Sara [1 ]
Uranga, Mireia [1 ]
Fernandez-del-Carmen, Asun [1 ]
Daros, Jose-Antonio [1 ]
Orzaez, Diego [1 ]
机构
[1] Univ Politecn Valencia, CSIC, Inst Biol Mol & Celular Plantas IBMCP, Valencia, Spain
关键词
anti-CRISPR; Cas9; Cas12a; AcrIIA4; AcrVA1; gene expression regulation; Nicotiana benthamiana; TRANSCRIPTIONAL ACTIVATION; INHIBITION; PROTEINS; CRISPR-CAS9; EXPRESSION; PLATFORM; ACRIIA4; SYSTEM;
D O I
10.1111/pbi.13723
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
CRISPR/Cas has revolutionized genome engineering in plants. However, the use of anti-CRISPR proteins as tools to prevent CRISPR/Cas-mediated gene editing and gene activation in plants has not been explored yet. This study describes the characterization of two anti-CRISPR proteins, AcrIIA4 and AcrVA1, in Nicotiana benthamiana. Our results demonstrate that AcrIIA4 prevents site-directed mutagenesis in leaves when transiently co-expressed with CRISPR/Cas9. In a similar way, AcrVA1 is able to prevent CRISPR/Cas12a-mediated gene editing. Moreover, using a N. benthamiana line constitutively expressing Cas9, we show that the viral delivery of AcrIIA4 using Tobacco etch virus is able to completely abolish the high editing levels obtained when the guide RNA is delivered with a virus, in this case Potato virus X. We also show that AcrIIA4 and AcrVA1 repress CRISPR/dCas-based transcriptional activation of reporter genes. In the case of AcrIIA4, this repression occurs in a highly efficient, dose-dependent manner. Furthermore, the fusion of an auxin degron to AcrIIA4 results in auxin-regulated activation of a downstream reporter gene. The strong anti-Cas activity of AcrIIA4 and AcrVA1 reported here opens new possibilities for customized control of gene editing and gene expression in plants.
引用
收藏
页码:399 / 408
页数:10
相关论文
共 50 条
[1]   The CRISPR tool kit for genome editing and beyond [J].
Adli, Mazhar .
NATURE COMMUNICATIONS, 2018, 9
[2]   Enabling plant synthetic biology through genome engineering [J].
Baltes, Nicholas J. ;
Voytas, Daniel F. .
TRENDS IN BIOTECHNOLOGY, 2015, 33 (02) :120-131
[3]   Efficient Gene Targeting in Maize Using Inducible CRISPR-Cas9 and Marker-free Donor Template [J].
Barone, Pierluigi ;
Wu, Emily ;
Lenderts, Brian ;
Anand, Ajith ;
Gordon-Kamm, William ;
Svitashev, Sergei ;
Kumar, Sandeep .
MOLECULAR PLANT, 2020, 13 (08) :1219-1227
[4]   Gene drives in plants: opportunities and challenges for weed control and engineered resilience [J].
Barrett, Luke G. ;
Legros, Mathieu ;
Kumaran, Nagalingam ;
Glassop, Donna ;
Raghu, S. ;
Gardiner, Donald M. .
PROCEEDINGS OF THE ROYAL SOCIETY B-BIOLOGICAL SCIENCES, 2019, 286 (1911)
[5]   Gene drive inhibition by the anti-CRISPR proteins AcrIIA2 and AcrIIA4 in Saccharomyces cerevisiae [J].
Basgall, Erianna M. ;
Goetting, Samantha C. ;
Goeckel, Megan E. ;
Giersch, Rachael M. ;
Roggenkamp, Emily ;
Schrock, Madison N. ;
Halloran, Megan ;
Finnigan, Gregory C. .
MICROBIOLOGY-SGM, 2018, 164 (04) :464-474
[6]   Simultaneous equimolar expression of multiple proteins in plants from a disarmed potyvirus vector [J].
Bedoya, Leonor ;
Martinez, Fernando ;
Rubio, Laura ;
Daros, Jose-Antonio .
JOURNAL OF BIOTECHNOLOGY, 2010, 150 (02) :268-275
[7]   The Discovery, Mechanisms, and Evolutionary Impact of Anti-CRISPRs [J].
Borges, Adair L. ;
Davidson, Alan R. ;
Bondy-Denomy, Joseph .
ANNUAL REVIEW OF VIROLOGY, VOL 4, 2017, 4 :37-59
[8]   A dual molecular analogue tuner for dissecting protein function in mammalian cells [J].
Brosh, Ran ;
Hrynyk, Iryna ;
Shen, Jessalyn ;
Waghray, Avinash ;
Zheng, Ning ;
Lemischka, Ihor R. .
NATURE COMMUNICATIONS, 2016, 7
[9]   Engineered anti-CRISPR proteins for optogenetic control of CRISPR-Cas9 [J].
Bubeck, Felix ;
Hoffmann, Mareike D. ;
Harteveld, Zander ;
Aschenbrenner, Sabine ;
Bietz, Andreas ;
Waldhauer, Max C. ;
Boerner, Kathleen ;
Fakhiri, Julia ;
Schmelas, Carolin ;
Dietz, Laura ;
Grimm, Dirk ;
Correia, Bruno E. ;
Eils, Roland ;
Niopek, Dominik .
NATURE METHODS, 2018, 15 (11) :924-+
[10]   Structural basis of CRISPR-SpyCas9 inhibition by an anti-CRISPR protein [J].
Dong, De ;
Guo, Minghui ;
Wang, Sihan ;
Zhu, Yuwei ;
Wang, Shuo ;
Xiong, Zhi ;
Yang, Jianzheng ;
Xu, Zengliang ;
Huang, Zhiwei .
NATURE, 2017, 546 (7658) :436-+