Sobolev Orthogonal Polynomials of Several Variables on Product Domains

被引:2
作者
Duenas Ruiz, Herbert [1 ]
Salazar-Morales, Omar [1 ]
Pinar, Miguel [2 ]
机构
[1] Univ Nacl Colombia, Dept Matemat, Ciudad Univ, Bogota, Colombia
[2] Univ Granada, Dept Matemat Aplicada, Granada, Spain
关键词
Orthogonal polynomials; several variables; classical orthogonal polynomials; product domains; Sobolev polynomials; ASYMPTOTIC PROPERTIES; HOLONOMIC EQUATION; APPROXIMATION; MONOTONICITY; SPACES; ORDER; ZEROS;
D O I
10.1007/s00009-021-01852-z
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Sobolev orthogonal polynomials of d variables on the product domain Omega := [a(1), b(1)] x ... x[a(d), b(d)] with respect to the inner product < f, g >(S) = (c)integral(Omega)del(k)f(x) . del(k)g(x)W(x)dx + Sigma(k-1)(i=m) lambda i del(i)g(p), k is an element of N, are constructed, where del(i) f, i = 0, 1, 2,..., kappa, is a column vector which contains all the partial derivatives of order i of f, x := (x(1), x(2), ..., x(d)) is an element of R-d, dx := dx(1)dx(2) ... dx(d), W(x) := w(1)(x(1))w(2)(x(2)) ... w(d)(x(d)) is a product weight function on O, wi is a weight function on [a(i), b(i)], i = 1, 2,..., d, lambda(i) > 0 for i = 0, 1,...,. k - 1, p = (p(1), p(2),..., p(d)) is a point in R-d, typically on the boundary of Omega, and c is the normalization constant of W. The main result consists of a generalization to several variables and higher order derivatives of some results which are presented in the literature of Sobolev orthogonal polynomials in two variables; namely, properties involving the integral part in <., .>(S), a connection formula, and a recursive relation for constructing iteratively the polynomials. To illustrate the main ideas, we present a new example for the HermiteHermite-Laguerre product weight function.
引用
收藏
页数:21
相关论文
共 43 条
  • [1] Sobolev Orthogonal Polynomials on a Simplex
    Aktas, Rabia
    Xu, Yuan
    [J]. INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2013, 2013 (13) : 3087 - 3131
  • [2] ALFARO M, 1999, METHODS APPL ANAL, V6, P593
  • [3] Althammer P., 1962, J. Reine Angew. Math, V211, P192, DOI DOI 10.1515/CRLL.1962.211.192
  • [4] Asymptotic properties of generalized Laguerre orthogonal polynomials
    Alvarez-Noderse, R
    Moreno-Balcázar, JJ
    [J]. INDAGATIONES MATHEMATICAE-NEW SERIES, 2004, 15 (02): : 151 - 165
  • [5] [Anonymous], 2013, ARAB J MATH SCI
  • [6] Atkinson K., 2005, J INTEGRAL EQUAT, V17, P223, DOI [10.1216/jiea/1181075333, DOI 10.1216/JIEA/1181075333]
  • [7] New steps on Sobolev orthogonality in two variables
    Bracciali, Cleonice F.
    Delgado, Antonia M.
    Fernandez, Lidia
    Perez, Teresa E.
    Pinar, Miguel A.
    [J]. JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2010, 235 (04) : 916 - 926
  • [8] Polynomial approximation in Sobolev spaces on the unit sphere and the unit ball
    Dai, Feng
    Xu, Yuan
    [J]. JOURNAL OF APPROXIMATION THEORY, 2011, 163 (10) : 1400 - 1418
  • [9] Sobolev orthogonal polynomials on the unit ball via outward normal derivatives
    Delgado, Antonia M.
    Fernandez, Lidia
    Lubinsky, Doron S.
    Perez, Teresa E.
    Pinar, Miguel A.
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2016, 440 (02) : 716 - 740
  • [10] Sobolev-type orthogonal polynomials on the unit ball
    Delgado, Antonia M.
    Perez, Teresa E.
    Pinar, Miguel A.
    [J]. JOURNAL OF APPROXIMATION THEORY, 2013, 170 : 94 - 106