On k-independence in graphs with emphasis on trees

被引:11
作者
Blidia, Mostafa
Chellali, Mustapha
Favaron, Odile
Meddah, Nacera
机构
[1] Univ Blida, Dept Math, Blida, Algeria
[2] Univ Paris 11, LRI, CNRS, UMR 8623, F-91405 Orsay, France
关键词
independence; k-independence; tree;
D O I
10.1016/j.disc.2006.11.007
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In a graph G = (V, E) of order n and maximum degree Delta, a subset S of vertices is a k-independent set if the subgraph induced by S has maximum deffee less or equal to k - 1. The lower k-independence number i(k) (G) is the minimum cardinality of a maximal k-independent set in G and the k-independence number beta(k)(G) is the maximum cardinality of a k-independent set. We show that i(k) <= n - Delta + k - 1 for any graph and any k <= Delta, and i(2) <= n - Delta if G is connected, that beta(k) (T) >= kn / (k + 1) for any tree, and that i(2) <= (n + s)/2 <= beta(2) for any connected bipartite graph with s support vertices. Moreover, we characterize the trees satisfying i(2) = n - Delta, beta(k) = kn/(k + 1), i(2) = (n + s)/2 or beta(2) = (n + s)/2. (c) 2007 Elsevier B.V.. All rights reserved.
引用
收藏
页码:2209 / 2216
页数:8
相关论文
共 7 条
  • [1] CHARTRAND G, 1996, LESNIAK GRAPHS DIGRA
  • [2] Favaron O., 1989, J COMBIN MATH COMBIN, V6, P199
  • [3] Fink J. F., 1985, Graph theory with applications to algorithms and computer science, P301
  • [4] Haynes T. W., 1998, FUNDAMENTALS DOMINAT
  • [5] HOPKINS G, 1986, ARS COMBINATORIA, V22, P19
  • [6] Jelen F, 1999, J GRAPH THEOR, V32, P241
  • [7] Maddox R.B., 1988, C NUMER, V66, P11