Interaction of physiological mechanisms in control of muscle glucose uptake

被引:37
作者
Wasserman, DH
Ayala, JE
机构
[1] Vanderbilt Univ, Sch Med, Dept Mol Physiol & Biophys, Nashville, TN 37232 USA
[2] Vanderbilt Univ, Sch Med, Mouse Metab Phenotyping Ctr, Nashville, TN 37232 USA
关键词
glucose analogue; hexokinase; isotope; metabolism; skeletal muscle; transgenic;
D O I
10.1111/j.1440-1681.2005.04191.x
中图分类号
R9 [药学];
学科分类号
1007 ;
摘要
1. Control of glucose uptake is distributed between three steps. These are the rate that glucose is delivered to cells, the rate of transport into cells, and the rate that glucose is phosphorylated within these same cells. The functional limitations to each one of these individual steps has been difficult to assess because they are so closely coupled to each other. Studies have been performed in recent years using complex isotopic techniques or transgenic mouse models to shed new light on the role that each step plays in overall control of muscle glucose uptake. 2. Membrane glucose transport is a major barrier and glucose delivery and glucose phosphorylation are minor barriers to muscle glucose uptake in the fasted, sedentary state. GLUT-4 is translocated to the muscle membrane during exercise and insulin-stimulation. The result of this is that it can become so permeable to glucose that it is only a minor barrier to glucose uptake. 3. In addition to increasing glucose transport, exercise and insulin-stimulation also increase muscle blood flow and capillary recruitment. This effectively increases muscle glucose delivery and by doing so, works to enhance muscle glucose uptake. 4. There is a growing body of data that suggests that insulin resistance to muscle glucose uptake can be because of impairments in any one or more of the three steps that comprise the process.
引用
收藏
页码:319 / 323
页数:5
相关论文
共 86 条
[1]   INSULIN-MEDIATED SKELETAL-MUSCLE VASODILATION CONTRIBUTES TO BOTH INSULIN SENSITIVITY AND RESPONSIVENESS IN LEAN HUMANS [J].
BARON, AD ;
STEINBERG, HO ;
CHAKER, H ;
LEAMING, R ;
JOHNSON, A ;
BRECHTEL, G .
JOURNAL OF CLINICAL INVESTIGATION, 1995, 96 (02) :786-792
[2]   INSULIN-RESISTANCE AFTER HYPERTENSION INDUCED BY THE NITRIC-OXIDE SYNTHESIS INHIBITOR L-NMMA IN RATS [J].
BARON, AD ;
ZHU, JS ;
MARSHALL, S ;
IRSULA, O ;
BRECHTEL, G ;
KEECH, C .
AMERICAN JOURNAL OF PHYSIOLOGY-ENDOCRINOLOGY AND METABOLISM, 1995, 269 (04) :E709-E715
[3]   HEMODYNAMIC ACTIONS OF INSULIN [J].
BARON, AD .
AMERICAN JOURNAL OF PHYSIOLOGY, 1994, 267 (02) :E187-E202
[4]  
Bessman S P, 1980, Curr Top Cell Regul, V16, P55
[5]   EFFECTS OF FAT ON GLUCOSE-UPTAKE AND UTILIZATION IN PATIENTS WITH NON-INSULIN-DEPENDENT DIABETES [J].
BODEN, G ;
CHEN, XH .
JOURNAL OF CLINICAL INVESTIGATION, 1995, 96 (03) :1261-1268
[6]   MECHANISMS OF FATTY ACID-INDUCED INHIBITION OF GLUCOSE-UPTAKE [J].
BODEN, G ;
CHEN, XH ;
RUIZ, J ;
WHITE, JV ;
ROSSETTI, L .
JOURNAL OF CLINICAL INVESTIGATION, 1994, 93 (06) :2438-2446
[7]   Free fatty acids in obesity and type 2 diabetes:: defining their role in the development of insulin resistance and β-cell dysfunction [J].
Boden, G ;
Shulman, GI .
EUROPEAN JOURNAL OF CLINICAL INVESTIGATION, 2002, 32 :14-23
[8]   Roles of glucose transport and glucose phosphorylation in muscle insulin resistance of NIDDM [J].
Bonadonna, RC ;
DelPrato, S ;
Bonora, E ;
Saccomani, MP ;
Gulli, G ;
Natali, A ;
Frascerra, S ;
Pecori, N ;
Ferrannini, E ;
Bier, D ;
Cobelli, DBC ;
DeFronzo, RA .
DIABETES, 1996, 45 (07) :915-925
[9]   REDUCED EXPRESSION OF HEXOKINASE-II IN INSULIN-RESISTANT DIABETES [J].
BRAITHWAITE, SS ;
PALAZUK, B ;
COLCA, JR ;
EDWARDS, CW ;
HOFMANN, C .
DIABETES, 1995, 44 (01) :43-48
[10]   Overexpression of hexokinase II in transgenic mice - Evidence that increased phosphorylation augments muscle glucose uptake [J].
Chang, PY ;
Jensen, J ;
Printz, RL ;
Granner, DK ;
Ivy, JL ;
Moller, DE .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1996, 271 (25) :14834-14839