Micro food web networks on suspended sediment

被引:4
作者
Thu Ha Nguyen [1 ]
Tang, Fiona H. M. [1 ]
Maggi, Federico [1 ]
机构
[1] Univ Sydney, Sch Civil Engn, Lab Adv Environm Engn Res, Bld J05, Sydney, NSW 2006, Australia
关键词
MARINE SNOW; SETTLING VELOCITY; HETEROTROPHIC BACTERIA; AGGREGATE FORMATION; PARTICLE-SIZE; DYNAMICS; COLONIZATION; FLOCCULATION; MODEL; NUTRIENT;
D O I
10.1016/j.scitotenv.2018.06.247
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
The genesis of suspended aggregates in aquatic ecosystems is not only a result of hydrodynamic mineral interactions but also a complex microbial food web network. A microbiological-physicalmodel (BFLOC2) is introduced here to predict aggregate geometry and settling velocity under simultaneous effects of hydrodynamic and biological processes. While minerals can contribute to aggregate dynamics through collision, aggregation, and breakup, living microorganisms can colonize and establish food web interactions that involve growth and grazing, and modify the aggregate structure. The BFLOC2 model describes the aggregate dynamics resulting from interactions between minerals and three types of microorganisms, namely bacteria, flagellates, and ciliates. BFLOC2 was first calibrated against the size and capacity (fractal) dimension of aggregates formed in a pure mineral system at different mineral concentrations and fluid shear rates, and then against the abundance of aggregate-attached cells in a pure microbial environment. BFLOC2 model and calibrated parameters were then tested against biomineral aggregate size, capacity dimension, and biomass fraction formed in biomineral flocculation experiments at four nutrient concentrations. Modelling of biomineral aggregate dynamics over a wide range of environmental conditions showed that maximum aggregate size, biomass fraction, and settling velocity could occur at different optimal environmental conditions. Unlike mineral aggregates, which have maximum size when shear rate tends to zero, a relative maximum size of biomineral aggregates can be reached at intermediate shear rates as a result of microbiological processes. The settling velocity was ultimately controlled by aggregate size, capacity dimension, and biomass fraction. Microorganism dynamics including cell motility and food web network interactions significantly controlled aggregate-attached cell abundance and aggregate dynamics. (C) 2018 Elsevier B.V. All rights reserved.
引用
收藏
页码:1387 / 1399
页数:13
相关论文
共 80 条
[1]   PRODUCTION OF HETEROTROPHIC BACTERIA INHABITING MACROSCOPIC ORGANIC AGGREGATES (MARINE SNOW) FROM SURFACE WATERS [J].
ALLDREDGE, AL ;
COLE, JJ ;
CARON, DA .
LIMNOLOGY AND OCEANOGRAPHY, 1986, 31 (01) :68-78
[2]   DIRECT OBSERVATIONS OF THE MASS FLOCCULATION OF DIATOM BLOOMS - CHARACTERISTICS, SETTLING VELOCITIES AND FORMATION OF DIATOM AGGREGATES [J].
ALLDREDGE, AL ;
GOTSCHALK, CC .
DEEP-SEA RESEARCH PART A-OCEANOGRAPHIC RESEARCH PAPERS, 1989, 36 (02) :159-&
[3]  
[Anonymous], 2015, CALIBRATION UNCERTAI
[4]   Succession of bacterivorous protists on laboratory-made marine snow [J].
Artolozaga, I ;
Santamaria, E ;
Lopez, A ;
Ayo, B ;
Iriberri, J .
JOURNAL OF PLANKTON RESEARCH, 1997, 19 (10) :1429-1440
[5]   Grazing rates of bacterivorous protists inhabiting diverse marine planktonic microenvironments [J].
Artolozaga, I ;
Valcárcel, M ;
Ayo, B ;
Latatu, A ;
Iriberri, J .
LIMNOLOGY AND OCEANOGRAPHY, 2002, 47 (01) :142-150
[6]   THE ECOLOGICAL ROLE OF WATER-COLUMN MICROBES IN THE SEA [J].
AZAM, F ;
FENCHEL, T ;
FIELD, JG ;
GRAY, JS ;
MEYERREIL, LA ;
THINGSTAD, F .
MARINE ECOLOGY PROGRESS SERIES, 1983, 10 (03) :257-263
[7]   Fine sediment and nutrient dynamics related to particle size and floc formation in a Burdekin River flood plume, Australia [J].
Bainbridge, Zoe T. ;
Wolanski, Eric ;
Alvarez-Romero, Jorge G. ;
Lewis, Stephen E. ;
Brodie, Jon E. .
MARINE POLLUTION BULLETIN, 2012, 65 (4-9) :236-248
[8]   A numerical simulation of the role of zooplankton in C, N and P cycling in Lake Kinneret, Israel [J].
Bruce, LC ;
Hamilton, D ;
Imberger, J ;
Gal, G ;
Gophen, M ;
Zohary, T ;
Hambright, KD .
ECOLOGICAL MODELLING, 2006, 193 (3-4) :412-436
[9]   HETEROTROPHIC BACTERIA AND BACTERIVOROUS PROTOZOA IN OCEANIC MACRO-AGGREGATES [J].
CARON, DA ;
DAVIS, PG ;
MADIN, LP ;
SIEBURTH, JM .
SCIENCE, 1982, 218 (4574) :795-797
[10]   ENRICHMENT OF MICROBIAL-POPULATIONS IN MACROAGGREGATES (MARINE SNOW) FROM SURFACE WATERS OF THE NORTH-ATLANTIC [J].
CARON, DA ;
DAVIS, PG ;
MADIN, LP ;
SIEBURTH, JM .
JOURNAL OF MARINE RESEARCH, 1986, 44 (03) :543-565