Computational electro-chemo-mechanics of lithium-ion battery electrodes at finite strains

被引:41
作者
Dal, Husnu [2 ]
Miehe, Christian [1 ]
机构
[1] Univ Stuttgart, Inst Appl Mech CE, D-70569 Stuttgart, Germany
[2] Middle E Tech Univ, Dept Mech Engn, TR-06800 Ankara, Turkey
关键词
Coupled problems; Li-ion batteries; Chemo-mehanics; Electro-mechanics; Butler-Volmer kinetics; INTERCALATION-INDUCED STRESS; DIFFUSION-INDUCED STRESS; IN-SITU MEASUREMENTS; CAHN-HILLIARD-TYPE; GENERATION; INSERTION; ANODES; CAPACITY; DYNAMICS; FRACTURE;
D O I
10.1007/s00466-014-1102-5
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A finite strain theory for electro-chemo-mechanics of lithium ion battery electrodes along with a monolithic and unconditionally stable finite element algorithm for the solution of the resulting equation systems is proposed. The chemical concentration and the displacement fields are introduced as independent variables for the formulation diffusion-mechanics coupling. The electrochemistry of the surface reaction kinetics is imposed at the boundary in terms of the Butler-Volmer kinetics. The intrinsic coupling arises from both stress-assisted diffusion in electrodes and ion mass flux induced volumetric deformation. We demonstrate the theoretical modeling aspects and algorithmic performance through representative initial boundary value problems. The proposed finite strain theory is especially well suited for electrode materials like silicon which exhibit large volume changes during lithium insertion/ extraction. We demonstrate the inadequacy of small-strain theories for diffusion-mechanics coupling in silicon based anode materials. The proposed numerical algorithm shows excellent performance, demonstrated for 2D and 3D representative numerical examples.
引用
收藏
页码:303 / 325
页数:23
相关论文
共 35 条
[1]   A Cahn-Hilliard-type theory for species diffusion coupled with large elastic-plastic deformations [J].
Anand, Lallit .
JOURNAL OF THE MECHANICS AND PHYSICS OF SOLIDS, 2012, 60 (12) :1983-2002
[2]  
[Anonymous], 2011, THESIS KARLSRUHER I
[3]   High energy density all-solid-state batteries: A challenging concept towards 3D integration [J].
Baggetto, Loic ;
Niessen, Rogier A. H. ;
Roozeboom, Fred ;
Notten, Peter H. L. .
ADVANCED FUNCTIONAL MATERIALS, 2008, 18 (07) :1057-1066
[4]   A simple finite element model of diffusion, finite deformation, plasticity and fracture in lithium ion insertion electrode materials [J].
Bower, A. F. ;
Guduru, P. R. .
MODELLING AND SIMULATION IN MATERIALS SCIENCE AND ENGINEERING, 2012, 20 (04)
[5]   A finite strain model of stress, diffusion, plastic flow, and electrochemical reactions in a lithium-ion half-cell [J].
Bower, A. F. ;
Guduru, P. R. ;
Sethuraman, V. A. .
JOURNAL OF THE MECHANICS AND PHYSICS OF SOLIDS, 2011, 59 (04) :804-828
[6]   Phase-transformation wave dynamics in LiFePO4 [J].
Burch, Damian ;
Singh, Gogi ;
Ceder, Gerbrand ;
Bazant, Martin Z. .
THEORY, MODELING AND NUMERICAL SIMULATION OF MULTI-PHYSICS MATERIALS BEHAVIOR, 2008, 139 :95-+
[7]   FREE ENERGY OF A NONUNIFORM SYSTEM .2. THERMODYNAMIC BASIS [J].
CAHN, JW .
JOURNAL OF CHEMICAL PHYSICS, 1959, 30 (05) :1121-1124
[8]   FREE ENERGY OF A NONUNIFORM SYSTEM .1. INTERFACIAL FREE ENERGY [J].
CAHN, JW ;
HILLIARD, JE .
JOURNAL OF CHEMICAL PHYSICS, 1958, 28 (02) :258-267
[9]   High-performance lithium battery anodes using silicon nanowires [J].
Chan, Candace K. ;
Peng, Hailin ;
Liu, Gao ;
McIlwrath, Kevin ;
Zhang, Xiao Feng ;
Huggins, Robert A. ;
Cui, Yi .
NATURE NANOTECHNOLOGY, 2008, 3 (01) :31-35
[10]   The influence of surface mechanics on diffusion induced stresses within spherical nanoparticles [J].
Cheng, Yang-Tse ;
Verbrugge, Mark W. .
JOURNAL OF APPLIED PHYSICS, 2008, 104 (08)