Semi-Implicit Difference Scheme for a Two-Dimensional Parabolic Equation with an Integral Boundary Condition

被引:7
作者
Jakubeliene, Kristina [1 ]
Ciupaila, Regimantas [2 ]
Sapagovas, Mifodijus [3 ]
机构
[1] Kaunas Univ Technol, Studentu Str 50, LT-51368 Kaunas, Lithuania
[2] Vilnius Gediminas Tech Univ, Sauletekio Av 11, LT-10223 Vilnius, Lithuania
[3] Vilnius Univ, Inst Math & Informat, Akad Str 4, LT-08663 Vilnius, Lithuania
关键词
integral boundary condition; semi-implicit difference scheme; stability; M-matrix; ALTERNATING DIRECTION METHOD; NONLOCAL CONDITIONS; STABILITY ANALYSIS; EIGENVALUE PROBLEM; HEAT-EQUATION; SUBJECT; OPERATOR;
D O I
10.3846/13926292.2017.1342709
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we consider a finite difference method for a class of two-dimensional parabolic equations with integral boundary conditions. The semi-implicit difference scheme is considered. The stability of difference scheme is proved using the properties of the M-matrices, particularly, the regular splitting of an M-matrix. The numerical results of some examples are presented, that approve our theoretical investigations.
引用
收藏
页码:617 / 633
页数:17
相关论文
共 39 条
[1]  
ASHYRALYEV A, 2004, DISCRETE DYN NA 0922, P273, DOI DOI 10.1155/S1026022604403033
[2]  
Atkinson K., 1991, An introduction to numerical analysis
[3]  
Bermudez A. J., 1994, SAVMA Symposium 1994 Proceedings., P1
[4]   STEPWISE STABILITY FOR THE HEAT-EQUATION WITH A NONLOCAL CONSTRAINT [J].
CAHLON, B ;
KULKARNI, DM ;
SHI, P .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1995, 32 (02) :571-593
[5]  
Cannon J. R., 1993, Applicable Analysis, V50, P1, DOI 10.1080/00036819308840181
[6]   A monotonic finite-difference scheme for a parabolic problem with nonlocal conditions [J].
Ciegis, R ;
Stikonas, A ;
Stikoniene, O ;
Suboc, O .
DIFFERENTIAL EQUATIONS, 2002, 38 (07) :1027-1037
[7]   Numerical Solution of Parabolic Problems with Nonlocal Boundary Conditions [J].
Ciegis, R. ;
Tumanova, N. .
NUMERICAL FUNCTIONAL ANALYSIS AND OPTIMIZATION, 2010, 31 (12) :1318-1329
[8]  
Ciegis R, 2014, NONLINEAR ANAL-MODEL, V19, P382
[10]   FINITE-DIFFERENCE METHODS FOR A NONLOCAL BOUNDARY-VALUE PROBLEM FOR THE HEAT-EQUATION [J].
EKOLIN, G .
BIT, 1991, 31 (02) :245-261