Numerical study of quasi-static and fatigue delamination growth in a post-buckled composite stiffened panel

被引:37
作者
Raimondo, A. [1 ]
Doesburg, S. A. [1 ]
Bisagni, C. [1 ]
机构
[1] Delft Univ Technol, Fac Aerosp Engn, Delft, Netherlands
关键词
Fatigue; Crack propagation; Finite element analysis; Post-buckling; Virtual crack closure technique; DAMAGE TOLERANCE; SIMULATION; LIFE;
D O I
10.1016/j.compositesb.2019.107589
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
In this work, an approach based on the Virtual Crack Closure Technique, included in the commercial finite element code ABAQUS, is adopted to study the propagation of delamination in composite structures under quasistatic and fatigue loads. The methodology, originally capable of simulating only delamination under quasi-static loads, has recently been extended introducing the possibility to analyze damage progression under fatigue load condition. The approach is assessed on simple specimens, Double Cantilever Beam and Mixed Mode Bending test, comparing the results with literature data. Afterwards, the behavior of a single-stringer specimen with an initial delamination is numerically investigated considering compressive loading conditions. At first, the single-stringer specimen is analyzed under quasi-static compressive load showing a clear correlation between local buckling phenomena and delamination growth. Then, a cyclic compressive load is applied such that the specimen switches between pre- and post-buckling conditions in a single load cycle. The outcomes of the numerical analyses are compared with the experimental data obtained from an experimental test campaign previously performed, showing the advantages of the adopted numerical technique but also the limitations that need to be addressed to properly analyze this phenomenon.
引用
收藏
页数:12
相关论文
共 35 条
[1]  
[Anonymous], P 16 INT C COMP MAT
[2]  
[Anonymous], 2012, DEV APPL BENCHMARK E
[3]  
[Anonymous], 2019, D6671D6671M19 ASTM I
[4]  
[Anonymous], AB AN GUID
[5]  
[Anonymous], 2017219663 NASATM
[6]  
[Anonymous], D6I15972019 ASTM INT
[7]  
[Anonymous], P 32 TECHN C AM SOC
[8]  
[Anonymous], MODELLING FATIGUE DA
[9]  
ASTM International, 2013, D552813 ASTM INT
[10]   Delamination Under Fatigue Loads in Composite Laminates: A Review on the Observed Phenomenology and Computational Methods [J].
Bak, Brian L. V. ;
Sarrado, Carlos ;
Turon, Albert ;
Costa, Josep .
APPLIED MECHANICS REVIEWS, 2014, 66 (06)