Parameter uniform approximations for time-dependent reaction-diffusion problems

被引:22
作者
Linss, Torsten [1 ]
Madden, Niall
机构
[1] Tech Univ Dresden, Inst Numer Math, D-01062 Dresden, Germany
[2] Natl Univ Ireland Univ Coll Galway, Dept Math, Galway, Ireland
关键词
singularly perturbed; layer-adapted meshes;
D O I
10.1002/num.20220
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Using discrete Green's functions techniques, we present a classification of fitted mesh methods for time-dependent reaction diffusion problems, based on the analyses of Lin beta (Lin beta, Numer Algor 40 (2005), 23-32) for the analogous steady-state problem and of Kopteva (Kopteva, Computing 66 (2001), 179-197) for time-dependent convection-diffusion problems. As examples of how to apply the analysis, we derive error estimates for the fitted meshes of Shishkin and Balchvalov, and provide supporting numerical results. (c) 2007 Wiley Periodicals, Inc.
引用
收藏
页码:1290 / 1300
页数:11
相关论文
共 8 条
[1]  
ANDREEV VB, 2004, ZH VYCHISL MAT MAT F, V44, P476
[2]  
BAKHVALOV NS, 1969, USSR COMP MATH MATH+, V9, P841
[3]   Uniform pointwise convergence of difference schemes for convection-diffusion problems on layer-adapted meshes [J].
Kopteva, N .
COMPUTING, 2001, 66 (02) :179-197
[4]  
LINB T, 2005, NUMER ALGORITHMS, V40, P23
[5]  
LINB T, 2006, THESIS TU DRESDEN
[6]  
Miller JJ, 2012, Fitted numerical methods for singular perturbation problems
[7]  
Miller JJH., 1998, Math. Proc. R. Ir. Acad, V98, P173
[8]  
Shishkin GI, 1990, Grid approximation of singularly perturbed elliptic and parabolic equations