Cycles in the cube-connected cycles graph

被引:27
作者
Germa, A
Heydemann, MC
Sotteau, D
机构
[1] Univ Paris Sud, CNRS, UA 410, LRI, F-91405 Orsay, France
[2] ENST, Paris 13, France
关键词
D O I
10.1016/S0166-218X(98)80001-2
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we study the existence of cycles of all lengths in the cube-connected cycles graph and we establish that this graph is no far from being pancyclic in case n odd and bi-pancyclic in case n even. (C) 1998 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:135 / 155
页数:21
相关论文
共 8 条
  • [1] GROUP ACTION GRAPHS AND PARALLEL ARCHITECTURES
    ANNEXSTEIN, F
    BAUMSLAG, M
    ROSENBERG, AL
    [J]. SIAM JOURNAL ON COMPUTING, 1990, 19 (03) : 544 - 569
  • [2] Berge C, 1973, GRAPHS HYPERGRAPHS
  • [3] BONDY A, 1973, COLL SOC J BOLYA KES, V10, P181
  • [4] Feldmann R., 1992, Parallel Processing Letters, V2, P13, DOI 10.1142/S0129626492000131
  • [5] Spanners of hypercube-derived networks
    Heydemann, MC
    Peters, JG
    Sotteau, D
    [J]. SIAM JOURNAL ON DISCRETE MATHEMATICS, 1996, 9 (01) : 37 - 54
  • [6] THE CUBE-CONNECTED CYCLES - A VERSATILE NETWORK FOR PARALLEL COMPUTATION
    PREPARATA, FP
    VUILLEMIN, J
    [J]. COMMUNICATIONS OF THE ACM, 1981, 24 (05) : 300 - 309
  • [7] ROSENBERG AL, 1991, UMCS199120 U MASS
  • [8] ON HAMILTONIAN CYCLES IN CAYLEY-GRAPHS OF WREATH-PRODUCTS
    STONG, R
    [J]. DISCRETE MATHEMATICS, 1987, 65 (01) : 75 - 80