The time-fractional kinetic equation for the non-equilibrium processes

被引:1
|
作者
Aydiner, Ekrem [1 ]
机构
[1] Istanbul Univ, Fac Sci, Dept Phys, TR-34134 Istanbul, Turkey
关键词
NON-MARKOV PROCESSES; GATED ION CHANNELS; PATH-INTEGRALS; STOCHASTIC-THEORY; CELL-MEMBRANES; DIFFUSION; DYNAMICS; MODEL;
D O I
10.1038/s41598-021-00135-7
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
In this study, we consider the non-Markovian dynamics of the generic non-equilibrium kinetic process. We summarize the generalized master equation, the continuous and discrete forms of the time-fractional diffusion equation. Using path integral formulation, we generalized the solutions of the Markovian system to the non-Markovian for the non-equilibrium kinetic processes. Then, we obtain the time-fractional kinetic equation for the non-equilibrium systems in terms of free energy. Finally, we introduce a time-fractional equation to analyse time evolution of the open probability for the deformed voltage-gated ion-channel system as an example.
引用
收藏
页数:6
相关论文
共 50 条
  • [1] On a nonlinear time-fractional cable equation
    Jleli, Mohamed
    Samet, Bessem
    AIMS MATHEMATICS, 2024, 9 (09): : 23584 - 23597
  • [2] The non-equilibrium attractor for kinetic theory in relaxation time approximation
    Strickland, M.
    JOURNAL OF HIGH ENERGY PHYSICS, 2018, (12):
  • [3] A time-fractional generalised advection equation from a stochastic process
    Angstmann, C. N.
    Henry, B. I.
    Jacobs, B. A.
    McGann, A. V.
    CHAOS SOLITONS & FRACTALS, 2017, 102 : 175 - 183
  • [4] Quenching Phenomenon of a Time-Fractional Kawarada Equation
    Xu, Yufeng
    Wang, Zhibo
    JOURNAL OF COMPUTATIONAL AND NONLINEAR DYNAMICS, 2018, 13 (10):
  • [5] The role of non-equilibrium fluxes in the relaxation processes of the linear chemical master equation
    de Oliveira, Luciana Renata
    Bazzani, Armando
    Giampieri, Enrico
    Castellani, Gastone C.
    JOURNAL OF CHEMICAL PHYSICS, 2014, 141 (06)
  • [6] PROPAGATING FRONT SOLUTIONS IN A TIME-FRACTIONAL FISHER-KPP EQUATION
    Ishii, Hiroshi
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2024, : 2460 - 2482
  • [7] NUMERICAL SOLUTION OF TIME-FRACTIONAL ORDER FOKKER-PLANCK EQUATION
    Prakash, Amit
    Kumar, Manoj
    TWMS JOURNAL OF APPLIED AND ENGINEERING MATHEMATICS, 2019, 9 (03): : 446 - 454
  • [8] Reconstruction of pointwise sources in a time-fractional diffusion equation
    Hrizi, Mourad
    Hassine, Maatoug
    Novotny, Antonio Andre
    FRACTIONAL CALCULUS AND APPLIED ANALYSIS, 2023, 26 (01) : 193 - 219
  • [9] Similarity Solutions for Multiterm Time-Fractional Diffusion Equation
    Elsaid, A.
    Latif, M. S. Abdel
    Maneea, Andm.
    ADVANCES IN MATHEMATICAL PHYSICS, 2016, 2016
  • [10] Computational analysis of a normalized time-fractional Fisher equation
    Kwak, Soobin
    Nam, Yunjae
    Kang, Seungyoon
    Kim, Junseok
    APPLIED MATHEMATICS LETTERS, 2025, 166