Prioritization of candidate genes in QTL regions based on associations between traits and biological processes

被引:35
作者
Bargsten, Joachim W. [1 ,2 ,3 ,5 ]
Nap, Jan-Peter [1 ,2 ,3 ]
Sanchez-Perez, Gabino F. [1 ,2 ,4 ]
van Dijk, Aalt D. J. [1 ,2 ,6 ]
机构
[1] Wageningen Univ, Appl Bioinformat Biosci Plant Sci Grp, NL-6700 AP Wageningen, Netherlands
[2] Res Ctr, Wageningen, Netherlands
[3] Netherlands Bioinformat Ctr NBIC, Nijmegen, Netherlands
[4] Wageningen Univ, Lab Bioinformat, Plant Sci Grp, NL-6700 AP Wageningen, Netherlands
[5] Wageningen Univ, Lab Plant Breeding, Plant Sci Grp, NL-6700 AP Wageningen, Netherlands
[6] Wageningen Univ, NL-6700 AP Wageningen, Netherlands
关键词
Quantitative trait locus; Candidate gene prioritization; Gene function prediction; GENOME-WIDE ASSOCIATION; FUNCTION PREDICTION; NUCLEOTIDE POLYMORPHISMS; ENRICHMENT ANALYSIS; FLOWERING TIME; COMPLEX TRAITS; RICE; ARCHITECTURE; ONTOLOGY; ANNOTATION;
D O I
10.1186/s12870-014-0330-3
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
Background: Elucidation of genotype-to-phenotype relationships is a major challenge in biology. In plants, it is the basis for molecular breeding. Quantitative Trait Locus (QTL) mapping enables to link variation at the trait level to variation at the genomic level. However, QTL regions typically contain tens to hundreds of genes. In order to prioritize such candidate genes, we show that we can identify potentially causal genes for a trait based on overrepresentation of biological processes (gene functions) for the candidate genes in the QTL regions of that trait. Results: The prioritization method was applied to rice QTL data, using gene functions predicted on the basis of sequence- and expression-information. The average reduction of the number of genes was over ten-fold. Comparison with various types of experimental datasets (including QTL fine-mapping and Genome Wide Association Study results) indicated both statistical significance and biological relevance of the obtained connections between genes and traits. A detailed analysis of flowering time QTLs illustrates that genes with completely unknown function are likely to play a role in this important trait. Conclusions: Our approach can guide further experimentation and validation of causal genes for quantitative traits. This way it capitalizes on QTL data to uncover how individual genes influence trait variation.
引用
收藏
页数:12
相关论文
共 82 条
[1]  
[Anonymous], 2011, R LANG ENV STAT COMP
[2]   Multilevel Analysis of Primary Metabolism Provides New Insights into the Role of Potassium Nutrition for Glycolysis and Nitrogen Assimilation in Arabidopsis Roots [J].
Armengaud, Patrick ;
Sulpice, Ronan ;
Miller, Anthony J. ;
Stitt, Mark ;
Amtmann, Anna ;
Gibon, Yves .
PLANT PHYSIOLOGY, 2009, 150 (02) :772-785
[3]   Gene Ontology: tool for the unification of biology [J].
Ashburner, M ;
Ball, CA ;
Blake, JA ;
Botstein, D ;
Butler, H ;
Cherry, JM ;
Davis, AP ;
Dolinski, K ;
Dwight, SS ;
Eppig, JT ;
Harris, MA ;
Hill, DP ;
Issel-Tarver, L ;
Kasarskis, A ;
Lewis, S ;
Matese, JC ;
Richardson, JE ;
Ringwald, M ;
Rubin, GM ;
Sherlock, G .
NATURE GENETICS, 2000, 25 (01) :25-29
[4]   Pathway-based analysis of genomic variation data [J].
Atias, Nir ;
Istrail, Sorin ;
Sharan, Roded .
CURRENT OPINION IN GENETICS & DEVELOPMENT, 2013, 23 (06) :622-626
[5]   Genome-wide association study of 107 phenotypes in Arabidopsis thaliana inbred lines [J].
Atwell, Susanna ;
Huang, Yu S. ;
Vilhjalmsson, Bjarni J. ;
Willems, Glenda ;
Horton, Matthew ;
Li, Yan ;
Meng, Dazhe ;
Platt, Alexander ;
Tarone, Aaron M. ;
Hu, Tina T. ;
Jiang, Rong ;
Muliyati, N. Wayan ;
Zhang, Xu ;
Amer, Muhammad Ali ;
Baxter, Ivan ;
Brachi, Benjamin ;
Chory, Joanne ;
Dean, Caroline ;
Debieu, Marilyne ;
de Meaux, Juliette ;
Ecker, Joseph R. ;
Faure, Nathalie ;
Kniskern, Joel M. ;
Jones, Jonathan D. G. ;
Michael, Todd ;
Nemri, Adnane ;
Roux, Fabrice ;
Salt, David E. ;
Tang, Chunlao ;
Todesco, Marco ;
Traw, M. Brian ;
Weigel, Detlef ;
Marjoram, Paul ;
Borevitz, Justin O. ;
Bergelson, Joy ;
Nordborg, Magnus .
NATURE, 2010, 465 (7298) :627-631
[6]   Yield-related QTLs and Their Applications in Rice Genetic Improvement [J].
Bai, Xufeng ;
Wu, Bi ;
Xing, Yongzhong .
JOURNAL OF INTEGRATIVE PLANT BIOLOGY, 2012, 54 (05) :300-311
[7]   Biological process annotation of proteins across the plant kingdom [J].
Bargsten, Joachim W. ;
Severing, Edouard, I ;
Nap, Jan-Peter ;
Sanchez-Perez, Gabino F. ;
van Dijk, Aalt D. J. .
CURRENT PLANT BIOLOGY, 2014, 1 :73-82
[8]   CONTROLLING THE FALSE DISCOVERY RATE - A PRACTICAL AND POWERFUL APPROACH TO MULTIPLE TESTING [J].
BENJAMINI, Y ;
HOCHBERG, Y .
JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-STATISTICAL METHODOLOGY, 1995, 57 (01) :289-300
[9]   An unbiased evaluation of gene prioritization tools [J].
Bornigen, Daniela ;
Tranchevent, Leon-Charles ;
Bonachela-Capdevila, Francisco ;
Devriendt, Koenraad ;
De Moor, Bart ;
De Causmaecker, Patrick ;
Moreau, Yves .
BIOINFORMATICS, 2012, 28 (23) :3081-3088
[10]   Iterative Group Analysis (iGA): A simple tool to enhance sensitivity and facilitate interpretation of microarray experiments [J].
Breitling, R ;
Amtmann, A ;
Herzyk, P .
BMC BIOINFORMATICS, 2004, 5 (1)