Analytic and numerical computation of stability bound for a class of linear delay differential equations using Lambert function

被引:0
作者
Chen, YQ
Xue, DY
Gu, J
机构
[1] Utah State Univ, Dept Elect & Comp Engn, Logan, UT 84322 USA
[2] Northeastern Univ, Sch Informat Sci & Engn, Robot & Artificial Intelligence Inst, Shenyang 110004, Peoples R China
[3] Dalhousie Univ, Dept Elect & Comp Engn, Halifax, NS B3J 2X4, Canada
来源
DYNAMICS OF CONTINUOUS DISCRETE AND IMPULSIVE SYSTEMS-SERIES B-APPLICATIONS & ALGORITHMS | 2003年
关键词
Lambert function; delayed differential equation; stability bound; networked control systems;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
By using Lambert function, the analytical stability bound is obtained in this paper for delayed high order systems with all repeating poles. When the poles are not identical, simple numerical procedures are introduced with the use of the Lambert function. Examples are presented for illustration.
引用
收藏
页码:489 / 494
页数:6
相关论文
共 24 条
[1]  
ABDELRAHMAN M, 1996, P AM NUCL SOC INT TO
[2]  
[Anonymous], 1949, P ROYAL SOC EDINBURG
[3]  
[Anonymous], 1921, OPERA MATH
[4]  
Asl FM, 2000, P AMER CONTR CONF, P2496, DOI 10.1109/ACC.2000.878632
[5]  
Bellman R., 1963, DIFFERENTIAL DIFFERE
[6]  
CHEN Y, 2002, AUTOMATICA, V38
[7]  
Chen Y., 1999, Lecture Notes Series on Control and Information Science
[8]  
CHEN Y., 1999, Iterative Learning Control: Convergence, Robustness, and Applications
[9]  
Corless R., 1993, MAPLE TECHNICAL NEWS, V9, P12
[10]   On the Lambert W function [J].
Corless, RM ;
Gonnet, GH ;
Hare, DEG ;
Jeffrey, DJ ;
Knuth, DE .
ADVANCES IN COMPUTATIONAL MATHEMATICS, 1996, 5 (04) :329-359