Deep Learning-Based Model Significantly Improves Diagnostic Performance for Assessing Renal Histopathology in Lupus Glomerulonephritis

被引:5
作者
Shen, Luping [1 ]
Sun, Wenyi [1 ]
Zhang, Qixiang [1 ]
Wei, Mengru [1 ]
Xu, Huanke [1 ]
Luo, Xuan [2 ]
Wang, Guangji [1 ]
Zhou, Fang [1 ]
机构
[1] China Pharmaceut Univ, Key Lab Drug Metab & Pharmacokinet, State Key Lab Nat Med, Nanjing, Peoples R China
[2] China Pharmaceut Univ, Sch Pharm, Nanjing, Peoples R China
关键词
Deep learning; Nephritis assessment; Histopathology assessment model; Renal pathology score; EXPRESSION; CLASSIFICATION; ERYTHEMATOSUS; NEPHRITIS;
D O I
10.1159/000524880
中图分类号
R5 [内科学]; R69 [泌尿科学(泌尿生殖系疾病)];
学科分类号
1002 ; 100201 ;
摘要
Background: Assessment of glomerular lesions and structures plays an essential role in understanding the pathological diagnosis of glomerulonephritis and prognostic evaluation of many kidney diseases. Renal pathophysiological assessment requires novel high-throughput tools to conduct quantitative, unbiased, and reproducible analyses representing a central readout. Deep learning may be an effective tool for glomerulonephritis pathological analysis. Methods: We developed a murine renal pathological system (MRPS) model to objectify the pathological evaluation via the deep learning method on whole-slide image (WSI) segmentation and feature extraction. A convolutional neural network model was used for accurate segmentation of glomeruli and glomerular cells of periodic acid-Schiff-stained kidney tissue from healthy and lupus nephritis mice. To achieve a quantitative evaluation, we subsequently filtered five independent predictors as image biomarkers from all features and developed a formula for the scoring model. Results: Perimeter, shape factor, minimum internal diameter, minimum caliper diameter, and number of objects were identified as independent predictors and were included in the establishment of the MRPS. The MRPS showed a positive correlation with renal score (r = 0.480, p < 0.001) and obtained great diagnostic performance in discriminating different score bands (Obuchowski index, 0.842 [95% confidence interval: 0.759, 0.925]), with an area under the curve of 0.78-0.98, sensitivity of 58-93%, specificity of 72-100%, and accuracy of 74-94%. Conclusion: Our MRPS for quantitative assessment of renal WSIs from MRL/lpr lupus nephritis mice enables accurate histopathological analyses with high reproducibility, which may serve as a useful tool for glomerulonephritis diagnosis and prognosis evaluation.
引用
收藏
页码:347 / 356
页数:10
相关论文
共 23 条
[1]   Development and Validation of a Deep Learning Model to Quantify Interstitial Fibrosis and Tubular Atrophy From Kidney Ultrasonography Images [J].
Athavale, Ambarish M. ;
Hart, Peter D. ;
Itteera, Mathew ;
Cimbaluk, David ;
Patel, Tushar ;
Alabkaa, Anas ;
Arruda, Jose ;
Singh, Ashok ;
Rosenberg, Avi ;
Kulkarni, Hemant .
JAMA NETWORK OPEN, 2021, 4 (05) :E2111176
[2]   Deep Learning-Based Segmentation and Quantification in Experimental Kidney Histopathology [J].
Bouteldja, Nassim ;
Klinkhammer, Barbara M. ;
Buelow, Roman D. ;
Droste, Patrick ;
Otten, Simon W. ;
Freifrau von Stillfried, Saskia ;
Moellmann, Julia ;
Sheehan, Susan M. ;
Korstanje, Ron ;
Menzel, Sylvia ;
Bankhead, Peter ;
Mietsch, Matthias ;
Drummer, Charis ;
Lehrke, Michael ;
Kramann, Rafael ;
Floege, Juergen ;
Boor, Peter ;
Merhof, Dorit .
JOURNAL OF THE AMERICAN SOCIETY OF NEPHROLOGY, 2021, 32 (01) :52-68
[3]   COMPARING THE AREAS UNDER 2 OR MORE CORRELATED RECEIVER OPERATING CHARACTERISTIC CURVES - A NONPARAMETRIC APPROACH [J].
DELONG, ER ;
DELONG, DM ;
CLARKEPEARSON, DI .
BIOMETRICS, 1988, 44 (03) :837-845
[4]   Computational Segmentation and Classification of Diabetic Glomerulosclerosis [J].
Ginley, Brandon ;
Lutnick, Brendon ;
Jen, Kuang-Yu ;
Fogo, Agnes B. ;
Jain, Sanjay ;
Rosenberg, Avi ;
Walavalkar, Vighnesh ;
Wilding, Gregory ;
Tomaszewski, John E. ;
Yacoub, Rabi ;
Rossi, Giovanni Maria ;
Sarder, Pinaki .
JOURNAL OF THE AMERICAN SOCIETY OF NEPHROLOGY, 2019, 30 (10) :1953-1967
[5]   Deep Learning-Based Histopathologic Assessment of Kidney Tissue [J].
Hermsen, Meyke ;
de Bel, Thomas ;
den Boer, Marjolijn ;
Steenbergen, Eric J. ;
Kers, Jesper ;
Florquin, Sandrine ;
Roelofs, Joris J. T. H. ;
Stegall, Mark D. ;
Alexander, Mariam P. ;
Smith, Byron H. ;
Smeets, Bart ;
Hilbrands, Luuk B. ;
van der Laak, Jeroen A. W. M. .
JOURNAL OF THE AMERICAN SOCIETY OF NEPHROLOGY, 2019, 30 (10) :1968-1979
[6]   Quantification of histopathological findings using a novel image analysis platform [J].
Horai, Yasushi ;
Mizukawa, Mao ;
Nishina, Hironobu ;
Nishikawa, Satomi ;
Ono, Yuko ;
Takemoto, Kana ;
Baba, Nobuyuki .
JOURNAL OF TOXICOLOGIC PATHOLOGY, 2019, 32 (04) :319-327
[7]   Development and Validation of a Radiomics Nomogram for Preoperative Prediction of Lymph Node Metastasis in Colorectal Cancer [J].
Huang, Yan-qi ;
Liang, Chang-hong ;
He, Lan ;
Tian, Jie ;
Liang, Cui-shan ;
Chen, Xin ;
Ma, Ze-lan ;
Liu, Zai-yi .
JOURNAL OF CLINICAL ONCOLOGY, 2016, 34 (18) :2157-+
[8]   AI applications in renal pathology [J].
Huo, Yuankai ;
Deng, Ruining ;
Liu, Quan ;
Fogo, Agnes B. ;
Yang, Haichun .
KIDNEY INTERNATIONAL, 2021, 99 (06) :1309-1320
[9]   Development and evaluation of deep learning-based segmentation of histologic structures in the kidney cortex with multiple histologic stains [J].
Jayapandian, Catherine P. ;
Chen, Yijiang ;
Janowczyk, Andrew R. ;
Palmer, Matthew B. ;
Cassol, Clarissa A. ;
Sekulic, Miroslav ;
Hodgin, Jeffrey B. ;
Zee, Jarcy ;
Hewitt, Stephen M. ;
O'Toole, John ;
Toro, Paula ;
Sedor, John R. ;
Barisoni, Laura ;
Madabhushi, Anant .
KIDNEY INTERNATIONAL, 2021, 99 (01) :86-101
[10]  
KIBERD BA, 1992, J AM SOC NEPHROL, V3, P930